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1 Background

Bayes Theorem allows us to state our prior beliefs, to calculate the likelihood of our data given
those beliefs, and then to update those beliefs with data, thus arriving at a set of posterior beliefs.
However, Bayesian calculations can be difficult to understand. This document attempts to provide
a simple walkthrough of some Bayesian calculations.

library(pander) # nice tables
library(tibble) # data frames

library(ggplot2) # beautiful graphs

2 Bayes Rule

Mathematically Bayes Theorem is as follows:

P(D | H)P(H)

|
P(D)

P(H | D) =

In words, Bayes Theorem may be written as follows:

likelihood x prior
data

posterior =


../Bayes-Theorem/Bayes-Theorem.html

Our posterior beliefs are proportional to our prior beliefs, multiplied by the likelihood of
those beliefs, given the data.

3 This Example
In this example, we provide an example of using Bayes Theorem to examine our conclusions about
the proportion of heads when a coin is flipped 10 times.

Conventionally, we call this proportion that we are trying to estimate 6.

For the sake of simplicity, this example uses a relatively simple set of prior beliefs about 3 possible
values for the proportion 6.

R code in this example is adapted and simplified from Kruschke (2011), p. 70

4 Prior

We set a simple set of prior beliefs, concerning 3 values of 6, the proportion of heads.

thetal <- c(.25, .50, .75) # candidate parameter values
pthetal <- c(.25, .50, .25) # prior probabilities

pthetal <- pthetal/sum(pthetal) # normalize
Our values of 6 are 0.25, 0.5 and 0.75, with probabilities P(6) of 0.25, 0.5 and 0.25.

ggplot(data = NULL,
aes(x thetal,
y pthetal)) +
geom bar(stat = "identity",
fill = "#FFBB0O") +
labs(title = "Prior Probabilities") +
theme minimal()
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myBayesianEstimates <- tibble(thetal, pthetal) # data frame

pander(myBayesianEstimates) # nice table

thetal | pthetal
0.25 0.25
0.5 0.5
0.75 0.25
5 The Data

10 coin flips. 1 Heads. 9 Tails.

datal <- c(1, 60, 0, 0, 0, 0, 0, 0, 0, 0) # the data

datal factor <- factor(datal,
levels = c(0, 1),
labels = c("T", "H"))

n_heads <- sum(datal == 1) # number of heads

n_tails <- sum(datal == 0) # number of tails

X <- seq(l, 10) # x goes from 1 to 10

y <- rep(l, 10) # y is a sequence of 10 1's



coindata <- data.frame(x, y, datal factor) # data for visualization

ggplot(coindata,
aes(x = X,
yzyl
label = datal factor,
color = datal factor)) +

geom point(size = 10, pch = 1) +
geom_text() +

labs(x = "",
y ="") +
scale color manual(values = c("black", "red")) +
theme void() +
theme(legend.position = "none")
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6 Likelihood

The likelihood is the probability that a given value of 6 would produce this number of heads.

The  probability = of multiple independent events A, B, C, etc. is
P(A,B,C,...)=P(A) x P(B) x P(C) x ....

number of heads

Therefore, in this case, the likelihood is proportional to [P(heads)] and multiply this

by [P (tails)]number of tails
Thus:

,5(0) oc @rumber of heads o (1 . 9>number of tails

likelihoodl <- thetal”n_heads * (1 - thetal)”n_tails # likelihood

ggplot(data = NULL,
aes(x = thetal,
y = likelihoodl)) +
geom_bar(stat = "identity",
fill = "#375E97") +



labs(title = "Likelihood") +
theme minimal()
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At this point our estimates include not only a value of § and P(6), but also the likelihood, £(6).

myBayesianEstimates <- tibble(thetal, pthetal, likelihoodl)

pander(myBayesianEstimates) # nice table

thetal | pthetal | likelihood1

0.25 0.25 0.01877

0.5 0.5 0.0009766

0.75 0.25 2.861e-06

7 Posterior

We then calculate the denominator of Bayes theorem:

B[£(0) x P(0)]
pdatal <- sum(likelihoodl * pthetal) # normalize

We then use Bayes Rule to calculate the posterior:

(D | H)P(H)

pH | D)=L i)

posteriorl <- likelihoodl * pthetal / pdatal # Bayes Rule



ggplot(data
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aes(x =

NULL,

thetal,

y = posteriorl)) +
geom bar(stat = "identity",
fill = "#3F681C") +
labs(title = "Posterior") +
theme minimal()
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Our estimates now include 6, P (), £(0) and P(6 | D).

myBayesianEstimates <- tibble(thetal, pthetal, likelihoodl, posteriorl)

pander(myBayesianEstimates) # nice table

thetal | pthetal | likelihoodl | posteriorl
0.25 0.25 0.01877 0.9056
0.5 0.5 0.0009766 0.09423
0.75 0.25 2.861e-06 0.000138

© Estimates Are A Combination of Prior and Likelihood

Notice how § = .5 has the highest prior probability. § = .25 has the highest likelihood.
0 = .75 has an equivalent prior probability to 8 = .25 but a much lower likelihood. The pos-

terior is proportional to the prior multiplied by the likelihood. In this case the posterior esti-
mates strongly favor 6 = .25.




8 Credits
Prepared by Andy Grogan-Kaylor agrogan@umich.edu, https://agrogani.github.io/.

Questions, comments and corrections are most welcome.
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https://agrogan1.github.io/

	Background
	Bayes Rule
	This Example
	Prior
	The Data
	Likelihood
	Posterior
	Credits

