The Value of Accepting the Null Hypothesis ### Andy Grogan-Kaylor #### 2023-11-29 #### Table of contents | 1 | Background | 1 | |----|-----------------------------|---| | 2 | Important Substantive Cases | 2 | | Re | eferences | 3 | ## 1 Background In standard frequentist models, we cannot formally accept the Null Hypothesis H_0 , but can only reject, or fail to reject, H_0 . Bayesian models allow one to both accept and reject H_0 (Kruschke and Liddell 2018). Accepting H_0 may be very scientifically valuable, and may have consequences for affirming similarity, universality, or treatment invariance (Gallistel 2009; Morey, Homer, and Proulx 2018). The ability to accept H_0 may also lead to a lower likelihood of the publication bias that results from frequentist methods predicated upon the rejection of H_0 (Kruschke and Liddell 2018). This handout is written from a *Bayesian* perspective. However, even from a traditional *frequentist* statistical perspective, it may be helpful to think about the *value* of results that are *not statistically significant*. A finding of a *null result* is dependent on having enough statistical power that one might plausibly detect an effect were an effect to exist. # 2 Important Substantive Cases The Value of Accepting the Null Hypothesis ${\cal H}_0$ | case | description | H_0 | example | |------------------------------|--|---|---| | Equivalence
Testing | Equivalence Of 2
Treatments Or
Interventions | $\beta_1=\beta_2$ | The effect of Treatment 1 is indistinguishable from the effect of Treatment 2 (especially important if one treatment is much more expensive, or time consuming than another). | | Equivalence
Testing | Equivalence Of 2
Groups On An
Outcome | $\bar{y_1} = \bar{y_2}$ or in multilevel modeling $u_0 = 0$ | People identifying as
men and people
identifying as women
are more similar than
different with regard
to psychological
processes (Hyde2005). | | Retiring
Interventions | There Is No Evidence That Intervention X Is Effective | $\beta_{intervention} = 0$ | Evidence consistently suggests that a particular treatment has near zero effect. | | Contextual
Equivalence | Equivalence of a
Predictor Across
Contexts
(Moderation) | $\beta_{interaction} = 0$ or in multilevel modeling $u_k = 0$ | Warm and supportive
parenting is equally
beneficial across
different contexts or
countries. | | Family Member
Equivalence | Equivalence of a
Predictor Across
Family Members | $\beta_{parent1} = \beta_{parent2}$ | Parenting from one parent is equivalent to parenting from another parent | | Full Mediation | Association of x and y Is Completely Mediated; No Direct Effect | $\beta_{xmy} \neq 0 \ \beta_{xy} = 0$ | The relationship of
the treatment and
the outcome is
completely mediated
by mechanism m. | | case | description | H_0 | example | |--------------------------|---|---------------------------------------|--| | No Mediation | No Indirect Effect; Association of x and y Is Not Mediated by m | $\beta_{xmy} = 0 \ \beta_{xy} \neq 0$ | The relationship of
the treatment and
the outcome is not
mediated at all by
mechanism m. | | Theory
Simplification | Removing An Association From A Theory | $\beta_x = 0$ | There is no evidence that x is associated with y. | | Theory Rejection | Rejecting A
Theory | $\beta_{theory} = 0$ | There is strong evidence (contra Theory X) that x is not associated with y. | ### References Gallistel, C R. 2009. "The importance of proving the null." *Psychological Review* 116 (2): 439–53. https://doi.org/10.1037/a0015251. Hyde, Janet Shibley. 2005. "The Gender Similarities Hypothesis." *American Psychologist* 60 (6): 581–92. https://doi.org/10.1037/0003-066X.60.6.581. Kruschke, John K, and Torrin M Liddell. 2018. "The Bayesian New Statistics: Hypothesis Testing, Estimation, Meta-Analysis, and Power Analysis from a Bayesian Perspective." Psychonomic Bulletin & Review 25 (1): 178–206. https://doi.org/10.3758/s13423-016-1221-4. Morey, Richard D., Saskia Homer, and Travis Proulx. 2018. "Beyond Statistics: Accepting the Null Hypothesis in Mature Sciences." *Advances in Methods and Practices in Psychological Science*. https://doi.org/10.1177/2515245918776023.