# Introduction to ggplot2

*Andy Grogan-Kaylor*

*January 22, 2020*

## Contents

1. **Background**
2. **ggplot in 3 easy steps (maybe 2 easy steps)**
   - 2.1 *aesthetic*: what you want to graph (e.g. x, y, z).
   - 2.2 *geom*: how you want to graph it.
   - 2.3 *options*: optional titles, themes, etc.
3. **A Simple Quick Example**
4. **Call The Relevant Libraries**
5. **Simulated Data**
6. **The Essential Idea Of ggplot2 Is Simple.**
   - 6.1 ggplot2 Starts By Calling The *aesthetic*
   - 6.2 We Then Call The *geometry*
7. **Examples**
   - 7.1 One Continuous Variable At A Time
     - 7.1.1 Dotplot
     - 7.1.2 Add Some Options
     - 7.1.3 Different Geoms
   - 7.2 One Categorical Variable at a Time
   - 7.3 A Categorical Variable and A Continuous Variable
     - 7.3.1 Barchart
   - 7.4 Two Continuous Variables At A Time
     - 7.4.1 Basic Scatterplot
     - 7.4.2 Add Some Options
     - 7.4.3 Try A Smoother
     - 7.4.4 Try A Density Plot
     - 7.4.5 Try a Hexagon Geom
     - 7.4.6 Combine Points and Smoother And Add Some Themes
   - 7.5 Two Continuous Variables And A Third Categorical Variable
     - 7.5.1 Modify the aesthetic to include group.
     - 7.5.2 Add facets or “small multiples” by group

---

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Background</td>
<td>2</td>
</tr>
<tr>
<td>2 ggplot in 3 easy steps (maybe 2 easy steps)</td>
<td>2</td>
</tr>
<tr>
<td>2.1 aesthetic: what you want to graph (e.g. x, y, z)</td>
<td>2</td>
</tr>
<tr>
<td>2.2 geom: how you want to graph it</td>
<td>2</td>
</tr>
<tr>
<td>2.3 options: optional titles, themes, etc</td>
<td>2</td>
</tr>
<tr>
<td>3 A Simple Quick Example</td>
<td>2</td>
</tr>
<tr>
<td>4 Call The Relevant Libraries</td>
<td>4</td>
</tr>
<tr>
<td>5 Simulated Data</td>
<td>4</td>
</tr>
<tr>
<td>6 The Essential Idea Of ggplot2 Is Simple.</td>
<td>5</td>
</tr>
<tr>
<td>6.1 ggplot2 Starts By Calling The aesthetic</td>
<td>5</td>
</tr>
<tr>
<td>6.2 We Then Call The geometry</td>
<td>5</td>
</tr>
<tr>
<td>7 Examples</td>
<td>6</td>
</tr>
<tr>
<td>7.1 One Continuous Variable At A Time</td>
<td>6</td>
</tr>
<tr>
<td>7.1.1 Dotplot</td>
<td>6</td>
</tr>
<tr>
<td>7.1.2 Add Some Options</td>
<td>6</td>
</tr>
<tr>
<td>7.1.3 Different Geoms</td>
<td>7</td>
</tr>
<tr>
<td>7.2 One Categorical Variable at a Time</td>
<td>9</td>
</tr>
<tr>
<td>7.3 A Categorical Variable and A Continuous Variable</td>
<td>10</td>
</tr>
<tr>
<td>7.3.1 Barchart</td>
<td>10</td>
</tr>
<tr>
<td>7.4 Two Continuous Variables At A Time</td>
<td>10</td>
</tr>
<tr>
<td>7.4.1 Basic Scatterplot</td>
<td>10</td>
</tr>
<tr>
<td>7.4.2 Add Some Options</td>
<td>11</td>
</tr>
<tr>
<td>7.4.3 Try A Smoother</td>
<td>11</td>
</tr>
<tr>
<td>7.4.4 Try A Density Plot</td>
<td>12</td>
</tr>
<tr>
<td>7.4.5 Try a Hexagon Geom</td>
<td>13</td>
</tr>
<tr>
<td>7.4.6 Combine Points and Smoother And Add Some Themes</td>
<td>14</td>
</tr>
<tr>
<td>7.5 Two Continuous Variables And A Third Categorical Variable</td>
<td>22</td>
</tr>
<tr>
<td>7.5.1 Modify the aesthetic to include group.</td>
<td>22</td>
</tr>
<tr>
<td>7.5.2 Add facets or “small multiples” by group</td>
<td>23</td>
</tr>
</tbody>
</table>
1 Background

R has a number of graphing libraries, including base graphics that are installed whenever you install R.

ggplot2, is a graphing library in R that makes beautiful graphs. ggplot2 graph syntax can be formidably complex, with a somewhat steep learning curve.

That being said, learning ggplot2 is worth the effort for a couple of reasons. First, the graphs are beautiful. Second, ggplot2’s syntax, though seemingly arcane at times, forces you to think about the nature of your data, and the ideas that you are graphing. Lastly, a little bit of knowledge about ggplot2 can go a long way, and can build a powerful foundation for future learning.

2 ggplot in 3 easy steps (maybe 2 easy steps)

2.1 aesthetic: what you want to graph (e.g. x, y, z).

2.2 geom: how you want to graph it.

2.3 options: optional titles, themes, etc.

3 A Simple Quick Example

The intent of this tutorial is to build the foundation of this idea that:

A little bit of ggplot can go a long way
and to give you a simple introduction to the idea that any ggplot graph is composed of:

- an aesthetic + a geom or two + other optional elements like titles and themes.

So, as a quick and simple example...

```r
library(ggplot2)

ggplot(my_demo_data, aes(x = my_outcome)) +
  geom_histogram(fill = "red", color = "black")
```

And now, with labels...

```r
ggplot(my_demo_data, aes(x = my_outcome)) +
  geom_histogram(fill = "red", color = "black") +
  labs(title = "Your Title Here",
       subtitle = "Your Subtitle Here",
       caption = "A Caption, If You Want One",
       x = "my outcome",
       y = "count")
```

A Caption, If You Want One
This document is a very brief introduction to the basic ideas of ggplot2. More information about ggplot can be found here. More ggplot2 examples can be found here.

4 Call The Relevant Libraries

You will need a few R libraries to work in ggplot. You may only need library(ggplot2), but some of these other libraries may also be helpful.

\begin{verbatim}
library(ggplot2) # beautiful graphs

library(ggthemes) # nice themes for ggplot2

library(ggbeeswarm) # "beeswarm" plots

library(cowplot) # arrange graphs

library(pander) # nice tables

library(psych) # nice table of descriptive statistics
\end{verbatim}

5 Simulated Data

In this example, we simulate some data. But your own learning of ggplot will progress more quickly if you use data that you have access to, on an issue that you care about.

Here are the first few rows of simulated data:

\begin{tabular}{lll}
  predictor & outcome & group \\
  49.54 & 82.64 & 0 \\
  92.09 & 114.9 & 0 \\
  69.22 & 63.9 & 0 \\
  101.5 & 125.7 & 0 \\
  94.91 & 98.41 & 0 \\
  115.3 & 104 & 0 \\
  75.41 & 40.19 & 0 \\
  108 & 104.2 & 0 \\
  114.6 & 115 & 0 \\
  85.79 & 84.03 & 0 \\
\end{tabular}
6 The Essential Idea Of ggplot2 Is Simple.

There are 3 essential elements to any ggplot call:

1. An aesthetic that tells ggplot which variables are being mapped to the x axis, y axis, (and often other attributes of the graph, such as the color fill). Intuitively, the aesthetic can be thought of as what you are graphing.
2. A geom or geometry that tells ggplot about the basic structure of the graph. Intuitively, the geom can be thought of as how you are graphing it.
3. Other options, such as a graph title, axis labels and overall theme for the graph.

6.1 ggplot2 Starts By Calling The aesthetic

For one variable:

p <- ggplot(mydata, aes(x = ...)) This says there is only one variable running along the horizontal x axis in the aesthetic.

The p <-... means that we are assigning this graph aesthetic to plot p. We can then add other features to plot p as we continue our work. This iterative nature of ggplot2 is one of the things that makes it so powerful. As your workflow and your documents become more complex, you can build a simple consistent foundation\textsuperscript{1} for your graphs, then add something simple to make a first graph, and a different something simple to make a second graph.

For two variables:

p <- ggplot(mydata, aes(x = ..., y = ...)) This says there are two variables: one for the horizontal x axis; and another for the vertical y axis, in the aesthetic.

6.2 We Then Call The geometry

We can then add different geometries to our plot:

For one variable:

+ geom_density() This says add a density geometry to the graph.
+ geom_histogram() This says add a histogram geometry to the graph.
+ geom_violin() This says add a violin plot geometry to the graph.
+ geom_beeswarm() This says add a beeswarm geometry to the graph.

\textsuperscript{1}By way of illustration, this foundation could be just an aesthetic (e.g. \texttt{aes(...)) alone, or possibly an aesthetic plus a theme (e.g. \texttt{theme_tufte()}), plus axis labels to create a consistent look and feel for your graphs across a report.
A *beeswarm* is a creative layout of points that intuitively lets you understand the distribution of a quantity. The *beeswarm* geometry requires separate installation of the ggbeeswarm package. You also need to call `library(ggbeeswarm)` to use this geometry.

For two variables:

+ `geom_point()` This says add a point (scatterplot) geometry to the graph.
+ `geom_smooth()` This says add a smoother to the graph.

## 7 Examples

### 7.1 One Continuous Variable At A Time

#### 7.1.1 Dotplot

```r
# call ggplot2 where aesthetic is: x uses our predictor variable

p1 <- ggplot(mydata,
  aes(x = predictor))

p1 +
  geom_dotplot(dotsize = .15) # add dotplot geom
```

#### 7.1.2 Add Some Options

```r
p1 +
  geom_dotplot(dotsize = .15, fill="red") + # add dotplot geom in red
  labs(title ="Dotplot of predictor") # Add title
```
7.1.3 Different Geoms

7.1.3.1 Histogram

p1 + geom_histogram(fill = "blue",
                   color="black") + # add histogram geom in blue
labs(title ="Histogram of predictor") # Add title

7.1.3.2 Density

p1 + geom_density(fill = "gold") + # add density geom in gold
labs(title ="Density of predictor") # Add title
7.1.3.3 Violin Plot

\[
p2 <- \text{ggplot(mydata,} \\
\text{aes(x = 1, } \# \text{ we need an aesthetic with } x \text{,} \\
\text{y = predictor)) } \quad \# \& y
\]

\[
p2 + \text{geom_violin(fill = "purple") +} \\
\text{labs(title ="Violin Plot of predictor") } \quad \# \text{ Add title}
\]

7.1.3.4 Beeswarm

\[
p3 <- \text{ggplot(mydata,} \\
\text{aes(x = predictor, } \# \text{ we need an aesthetic with } x \text{,} \\
\text{y = 1)) } \quad \# \& y
\]

\[
p3 + \text{geom_beeswarm(color = "red",} \\
\text{groupOnX = FALSE) +} \\
\text{labs(title = "Beeswarm Plot of predictor") +} \quad \# \text{ Add title} \\
\text{theme(axis.title.y = element_blank(),} \\
\text{axis.text.y = element_blank()) } \quad \# \text{ tweak y axis}
\]
### 7.2 One Categorical Variable at a Time

The easiest way to represent a single categorical variable is likely a bar graph. Here bars represent the count of observations in each group.

```r
p_barchart <- ggplot(mydata, aes(x = group)) + geom_bar(fill = "red")
```

![Bar Chart](image)

Changing the aesthetic slightly results in a stacked bar chart. Since all groups are stacked in 1 bar, we have to add information about the colors that we want to use to distinguish the groups.

```r
p_stacked_barchart <- ggplot(mydata, aes(x = 1, fill = group)) + geom_bar() + scale_fill_manual(values = c("red", "blue"))
```

![Stacked Bar Chart](image)
7.3 A Categorical Variable and A Continuous Variable

7.3.1 Barchart

Here bars represent the average value of our outcome variable for members of each group.

```r
p_barchart_of_mean <- ggplot(mydata,
                           aes(x = group,  # slightly different aesthetic
                                y = outcome)) +
  stat_summary(fun.y = mean,  # take the mean of the data
               fill = "blue",  # fill color
               geom = "bar")  # we want to summarize data with bars
```

7.4 Two Continuous Variables At A Time

7.4.1 Basic Scatterplot

# call ggplot2 where aesthetic uses both predictor and outcome

```r
p4 <- ggplot(mydata,
             aes(x = predictor,
                  y = outcome))  # set up aesthetic

p4 + geom_point()  # add point geom (scatterplot)
```
7.4.2 Add Some Options

```r
p4 + # start with basic plot that has only an aesthetic
   geom_point(color = "blue") + # add point geom in blue
   labs(title = "Scatterplot of Outcome by Predictor") # add title
```

Scatterplot of Outcome by Predictor

7.4.3 Try A Smoother

```r
p4 +
   geom_smooth() + # add smooth geom
   labs(title = "Smoother of Outcome by Predictor") # add title
```

Smoother of Outcome by Predictor
7.4.4 Try A Density Plot

7.4.4.1 Simple Density

p4 +

```r
  geom_density2d(color = "blue") + # add density geom
  labs(title = "Density Plot of Outcome by Predictor") # add title
```

7.4.4.2 Filled Density

While not strictly necessary, the use of `scale_fill_gradient` seems to improve the presentation. You can choose your own colors.

p4 +

```r
  stat_density_2d(aes(fill = ..level..),
                  geom = "polygon") + # add filled density geom
  scale_fill_gradient(low = "blue",
                      high = "red") +
  labs(title = "Density Plot of Outcome by Predictor") # add title
```

7.4.4.3 Add Points

p4 +

```r
  stat_density_2d(aes(fill = ..level..),
```
geom = "polygon") + # add filled density geom
gem_point(color = "orange") +
scale_fill_gradient(low = "blue",
                    high = "red") +
labs(title = "Density Plot of Outcome by Predictor") # add title

7.4.4.4 Use a Raster Geom Instead

p4 +
  stat_density_2d(geom = "raster",
                    aes(fill = ..density..),
                    contour = FALSE) +
  scale_fill_gradient(low = "blue",
                     high = "red") +
  labs(title = "Density Plot (Raster) of Outcome by Predictor") # add title

7.4.5 Try a Hexagon Geom

geom_hex may be a useful visualization, especially when there is the possibility of over-plotting due to many many points.

p4 +
  geom_hex() +
scale_fill_gradient(low = "blue",
                  high = "red") +
labs(title = "Hexagon Plot of Outcome by Predictor") # add title

Hexagon Plot of Outcome by Predictor

7.4.6 Combine Points and Smoother And Add Some Themes

7.4.6.1 Themes Included With ggplot2

7.4.6.1.1 Default ggplot2 Theme

p4 +
  geom_point() + # point geom
  geom_smooth() + # add smooth geom
  labs(title = "Scatterplot And Smoother of Outcome",
       subtitle = "nby Predictor") + # add title
  theme_grey() # default theme
7.4.6.1.2 The “minimal” theme

```r
p4 +
  geom_point() + # point geom
  geom_smooth() + # add smooth geom
  labs(title = "Scatterplot And Smoother of Outcome \nby Predictor") + # add title
  theme_minimal() # default theme
```
7.4.6.2 Themes requiring `ggthemes()`

The themes below make use of `library(ggthemes)` which you will need to install.

7.4.6.2.1 “538” Theme

```r
p4 +
geom_point() + # point geom
geom_smooth() + # add smooth geom
labs(title = "Scatterplot And Smoother of Outcome by Predictor") + # add title
theme_fivethirtyeight() + # "538"-like theme
scale_color_fivethirtyeight() # "538"-like colors
```
7.4.6.2.2 “Solarized Theme”

```r
p4 +
    geom_point() + # point geom
    geom_smooth() + # add smooth geom
    labs(title = "Scatterplot And Smoother of Outcome by Predictor") + # add title
    theme_solarized() + # Google Docs theme
    scale_colour_solarized() # Google Docs colors
```
7.4.6.2.3 “Solarized Dark” Theme

```r
p4 +
  geom_point() + # point geom
  geom_smooth() + # add smooth geom
  labs(title = "Scatterplot And Smoother of Outcome by Predictor") + # add title
  theme_solarized(light = FALSE) + # solarized dark theme
  scale_colour_solarized("blue") # solarized dark color palette
```
7.4.6.2.4 “Economist” Theme

```r
p4 +
  geom_point() + # point geom
  geom_smooth() + # add smooth geom
  labs(title = "Scatterplot And Smoother of Outcome by Predictor") + # add title
  theme_economist() + # Economist magazine theme
  scale_colour_economist() # Economist magazine colors
```
### 7.4.6.2.5 “Tufte” Theme

# same plot with theme and geom based on the work of Edward Tufte

```r
p4 +
  geom_point() +
  geom_smooth(color = "red") +
  theme_tufte() +
  labs(title = "Scatterplot And Smoother of Outcome by Predictor")
```
7.4.6.2.6 "Google Docs Theme"

```r
p4 +
  geom_point() + # point geom
  geom_smooth() + # add smooth geom
  labs(title = "Scatterplot And Smoother of Outcome by Predictor") + # add title
  theme_gdocs() + # Google Docs theme
  scale_colour_gdocs() # Google Docs colors
```
### 7.5 Two Continuous Variables And A Third Categorical Variable

#### 7.5.1 Modify the aesthetic to include group.

```r
p5 <- ggplot(mydata,
              aes(x = predictor,
                  y = outcome,
                  color = group)) # aesthetic includes color by group

p5 + geom_point() +
    geom_smooth() +
    theme_economist() +
    scale_color_economist() +
    labs(title = "Scatterplot And Smoother of Outcome \nby Predictor")
```
7.5.2 Add facets or “small multiples” by group

p5 +
  geom_point() +
  geom_smooth() +
  facet_wrap(~group) + # facets or "small multiples" by group
  theme_economist() +
  scale_color_economist() +
  labs(title = "Scatterplot And Smoother of Outcome \nby Predictor")
8  There Is A Lot More That Can Be Done With ggplot2

More information can be found at ggplot2.
More ggplot2 examples can be found here.

Graphics made with the ggplot2 graphing library created by Hadley Wickham.
Available online at https://agroganweb.wordpress.com/data-visualization-dataviz/

Quick Introduction to ggplot2 by Andrew Grogan-Kaylor is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Last updated: January 22 2020 at 14:24