Telling Stories With Data: Graphing Change Over Time

Andy Grogan-Kaylor

2024-02-19

Table of contents

1 Graphs	
1.1 Scatterplot	. 1
1.2 Line Plot	. 1
1.3 Spaghetti Plot	. 2
1.4 Smoothed Trajectories	. 2
1.5 Slopegraph	. 3
2 The Data Used In This Example Are Simulated	. 4

1 Graphs

1.1 Scatterplot

We start in thinking about graphing change over time with a scatterplot.¹²

1.2 Line Plot

A natural next step is to connect the dots of a scatterplot with straight line segments to form a line plot.³

¹Scatterplots show every data point. However, with many data points, scatterplots may become overcomplicated, and difficult to interpret. Points may even be plotted over other data points.

²Note that we are using *color* and *line type* to distinguish different individuals. This may not always be possible, especially when there are a large number of individuals in the data.

³With any of the options discussed, one may consider *small multiples* where each individual trajectory is placed in its own sub-graph.

1.3 Spaghetti Plot

Instead of simply connecting the observations, one may estimate an individual linear trajectory. In *multilevel modeling* these line plots showing individual estimated linear trajectories are sometimes called *spaghetti plots*.

1.4 Smoothed Trajectories

Alternatively, rather than connecting observations with straight lines, or estimating an overall straight line trajectory for each individual, it may be useful to *smooth* the trajectories by drawing curved lines between individual observations.⁴

⁴One needs to be careful, however, as the smoothed trajectories may give the impression of having more data points than one actually has.

1.5 Slopegraph

An increasingly popular option is a slope graph.⁵

⁵In order to be clear and effective, a slope graph may often only show the outcome at the beginning point, and at the end point. A slope graph may be less satisfactory when there are multiple timepoints. The small multiple idea works with a slopegraph as well.

2 The Data Used In This Example Are Simulated.

id	t	outcome			
1	1	1			
1	2	2			
1	3	3			
1	4	4			
1	5	5			
2	1	5			
2	2	4			
2	3	3			
2	4	2			
2	5	1			
3	1	2			
3	2	2			
3	3	2			
3	4	2			
3	5	2			
4	1	3			
4	2	3			
4	3	4			
4	4	2			
4	5	1			
5	1	0			
5	2	1			
5	3	2			
5	4	3			
5	5	4			

Long Data

Many data sets, but not all, are originally created in the *wide* format–as shown below–where every row of data is an *individual*, and an individual only has a *single row*. Ideally, every row in *wide* data is uniquely identified by an individual *id* number.

id	outcome.1	outcome.2	outcome.3	outcome.4	outcome.5
1	1	2	3	4	5
2	5	4	3	2	1
3	2	2	2	2	2
4	3	3	4	2	1
5	0	1	2	3	4

Wide Data

Generally, for graphing change over time, it is most appropriate to have data that are in a *long* format, as shown in the margin. In *long* data every row represents a particular *measurement occasion* for a *particular individual*. Each individual in the data set thus has *multiple rows*. Ideally, every row in data in the *long* format is uniquely identified by the combination of an *id* number and a *study wave*.

Data can be *reshaped* from *wide* to *long* format, and *vice versa*. Two straightforward options are the reshape command, as available in both Stata and R.

Graphics made with ggplot2created by Hadley Wickham.