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1 Introduction

50

100

150

80 90 100 110 120
x

y
group

1

2

3

4

5

6

7

8

9

10

overall

Multilevel Model

Figure 1: Simulated Multilevel Model

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝑢0𝑗 + 𝑢1𝑗𝑥 + 𝑒𝑖𝑗

All multilevel models account for group structure, in estimating the association of 𝑥 and
𝑦, by including a random intercept (𝑢0), and possibly one or more random slope terms
(𝑢1, 𝑢2, 𝑒𝑡𝑐....).
Bayesian models may offer some advantages over frequentist models, but may be substantially
slower to converge.

2 Conceptual Appropriateness

Following Kruschke (2014) all Bayesian models have a conceptual appropriateness.

In frequentist reasoning we are estimating the probability of observing data at least as extreme
as our data, while assuming a null hypothesis (𝐻0). As has been noted, 𝐻0, e.g. 𝛽 = 0,
or ̄𝑥𝐴 − ̄𝑥𝐵 = 0, is very often not a substantively interesting or substantively meaningful
hypothesis.

In Bayesian analysis, we are not rejecting a null hypothesis. Instead, we are directly estimating
the value of a parameter such as 𝛽 and are indeed estimating a full probability distribution for
this parameter.
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3 Accepting the Null Hypothesis (𝐻0)

The Bayesian approach means that we have the ability to accept the null hypothesis 𝐻0 (Kr-
uschke & Liddell, 2018). This ability to accept 𝐻0 might possibly lead to theory simplification
(Gallistel, 2009; Morey et al., 2018), as well as to a lower likelihood of the publication bias
that results from frequentist methods predicated upon the rejection of 𝐻0 (Kruschke & Liddell,
2018).

4 Model Comparison

Relatedly, Bayesian approaches allow one to compare an alternative model 𝐻𝐴 with a null
model 𝐻0, or to simply compare two alternative statistical models (𝐻1 vs. 𝐻2). Bayesian mod-
els may have a better perspective on these kinds of statistical comparisons than do frequentist
approaches. As Jarosz et al. (2014) note:

“All Bayesian approaches are comparisons of models. This means that a Bayes
factor considers the likelihood of both the null and the alternative hypothesis.
From the researcher’s standpoint, this is likely closer to their overall goal than
simply rejecting the null hypothesis.”

5 Prior Information

Bayesian models allow one to incorporate prior information about a parameter of interest.

Prior information may come from the prior research literature, e.g. from systematic reviews
or meta-analyses, or expert opinion or clinical wisdom.

Kruschke (2014) points out that “No analysis is immune to false alarms, because randomly
sampled data will occasionally contain accidental coincidences of outlying values.” However,
according to Kruschke (2014) careful use of priors may reduce the probability of false alarms.

6 Multiple Comparisons

As Kruschke (2014) observes, multiple comparisons (especially when they are post hoc) are
less of a concern for Bayesian analysis than they are for a frequentist analysis:

“In a Bayesian analysis, however, there is just one posterior distribution over the pa-
rameters that describe the conditions. That posterior distribution is unaffected by
the intentions of the experimenter, and the posterior distribution can be examined
from multiple perspectives however is suggested by insight and curiosity.”
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7 Smaller Samples

Bayesian multilevel models may be better with small samples (Rognli et al., 2022; van de
Schoot et al., 2015), especially samples with small numbers of Level 2 units (Hox et al.,
2012). Some of this advantage may occur when parameters are not normally distributed
(Muthen & Asparouhov, 2012). It appears that much of this improvement in performance is
dependent upon the use of informative priors (Smid et al., 2020), and that Bayesian models
with small samples may provide worse estimates than maximum likelihood estimates when less
informative, or inaccurate, priors are used (McNeish, 2016).

8 Full Distribution of Parameters

Bayesian models of all kinds provide full distributions of the parameters (e.g. 𝛽’s and random
effects (𝑢’s))–both singly and jointly–rather than only point estimates.

Information about the full distribution of a parameter, such as the estimate of the probability
distribution of values of a risk factor, a protective factor, or the effect of an intervention, may
be substantively meaningful (Rindskopf, 2020). Such information may be especially important
when the distribution of a regression parameter is non-normal (Finch & Bolin, 2017; van de
Schoot et al., 2014) e.g. in smaller samples.
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Figure 2: Distribution of a Single Parameter
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As Stata Corporation notes, “In a Bayesian multilevel model, random effects are model pa-
rameters just like regression coefficients and variance components” (StataCorp, 2020). This
ability to estimate the distributions of these random effects means that the distribution of
the random effect for one group can be compared to another. For example, the distribution
of a parameter in one country could be directly compared to the distribution of that same
parameter in another country. One could even estimate the probability that a particular 𝛽
had a higher value in one group (e.g. country), than in another. As Balov (2016) suggests, this
Bayesian approach allows us to “quantify the credibility” of these comparisons, which would
not be possible with a frequentist approach. Rognli et al. (2022) make a similar point about
estimating the probability of a practically or substantively meaningful effect size.

As an example, Stunnenberg et al. (2018) conducted a Bayesian analysis where the results of
the multilevel analysis were used to inform treatment decisions. Here the data were repeated
measures on patients, and thus the patients were the groups: “On completion of each treatment
set, a Bayesian analysis was conducted to calculate the posterior probability of mexiletine
[treatment] producing a clinically meaningful difference in the individual patient.”

9 Distributional Models

Bayesian estimators allow one to directly model 𝜎𝑢0
, the variance of the Level 2 units, as a

function of covariates (Burkner, 2018). This potentially allows for the opportunity for this
variation to become an outcome parameter of substantive interest.
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10 Non-Linear Terms
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Figure 4: Non-Linear Terms

Bayesian estimators allow for the incorporation of non-linear terms (Burkner, 2018). Such non-
linear terms offer ways of non-parametrically fitting curvature. An open question is whether
such methods represent a kind of over-fitting. A related question is the degree to which non-
linear terms provide substantively interpretable results.

11 Maximal Models

Hypothetically, one might imagine that there could be group level unobserved factors which
affect regression slopes–i.e. the relationship between a predictor x and outcome variable y.
Arguably, were one to ignore these unobserved factors in statistical estimation, they would
show up either in an error term (𝑒𝑖 or 𝑢0), or in the regression coefficients (𝛽). Were they to
show up in the regression coefficients this would represent statistical bias and a substantive
mis-estimation of important effects. thus, there is a conceptual argument for including as
many random effects—i.e. random slopes—in a statistical model as possible.

Bayesian estimators more readily allow for the estimation of so called maximal models (Barr
et al., 2013; Frank, 2018), which allow for the inclusion of a large number of random slopes,
e.g. 𝑢1, 𝑢2, 𝑢3, ..., 𝑒𝑡𝑐. even when some of those estimated slopes are close to 0.
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It should be noted that Matuschek et al. (2017) argue that such a maximal approach may
lead to a loss of statistical power and further argue that one should adhere to “a random effect
structure that is supported by the data.”

In contrast, Nalborczyk et al. (2019) argue that maximal models are supported under
the Bayesian approach. Oberauer (2022) also argues for including multiple random slopes.
Schielzeth and Forstmeier (2009) make a similar argument from a frequentist perspective.
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