Tables for Multilevel Models in Stata

Andy Grogan-Kaylor

2024-10-03

1 Introduction

This is a shorter working example to make tables in Stata.

2 Data Source 👌

The data used in this example are derived from the R package *Functions and Datasets for "Forest Analytics with R"*.

According to the documentation, the source of these data are: "von Guttenberg's Norway spruce (Picea abies [L.] Karst) tree measurement data."

Figure 1: Old Tjikko, a 9,550 Year Old Norway Spruce in Sweden

The documentation goes on to further note that:

"The data are measures from 107 trees. The trees were selected as being of average size from healthy and well stocked stands in the Alps."

3 Setup 🛆

clear all // clear workspace

use "gutten.dta", clear // use tree data as example

4 Variables 👌

site Growth *quality* class of the tree's habitat. 5 levels.

location Distinguishes tree *location*. 7 levels.

tree An identifier for the tree within location.

age_base The tree age taken at ground level.

height Tree height, m.
dbh_cm Tree diameter, cm.
volume Tree volume.
age_bh Tree age taken at 1.3 m.
tree_ID A factor uniquely identifying the tree.

5 Estimate Multilevel Models 👌

♀ Use quietly To Suppress Output

For the sake of parsimony, I use quietly: to suppress the output of the mixed commands.

```
quietly: mixed height age_base i.site || tree_ID: // shorter mixed model
est store M1 // store the estimates
quietly: mixed height age_base i.site i.location || tree_ID: // longer mixed
model
est store M2 // store the estimates
```

6 Table With etable 👌

6.1 Regression Coefficients With Significance Stars

etable, estimates(M1 M2) /// use these estimate(s)
novarlabel /// variable names only; could use variable labels
cstat(_r_b) /// beta's only
showstars showstarsnote /// show stars and note
column(estimate) // column is modelname

	M1		M2	
age_base	0.214	**	0.214	**
site				
2	-3.316	**	-2.994	**
3	-8.095	**	-7.765	**
4	-11.510	**	-10.844	**
5	-15.866	**	-15.179	**
location				
2			-0.322	
3			0.475	
4			0.060	
5			-0.450	
6			-0.255	
7			-1.454	
cons	8.233	**	8.181	**
_ var(cons)	2.171		1.981	
var(e)	8.393		8.397	
Number of observations	1200		1200	
** p<.01, * p<.05				

6.2 Regression Coefficients With p Values

etable, estimates(M1 M2) /// use these estimate(s)
novarlabel /// variable names only; could use variable labels
cstat(_r_b) cstat(_r_p) /// beta's and p values
column(estimate) // column is modelname

	M1	M2
age_base	0.214	0.214
site	0.00	0.00

2		-3.316	-2.994
		0.00	0.00
3		-8.095	-7.765
		0.00	0.00
4		-11.510	-10.844
		0.00	0.00
5		-15.866	-15.179
		0.00	0.00
location			
2			-0.322
			0.80
3			0.475
			0.46
4			0.060
			0.93
5			-0.450
			0.40
6			-0.255
			0.72
7			-1.454
			0.05
_cons		8.233	8.181
		0.00	0.00
<pre>var(_cons)</pre>)	2.171	1.981
var(e)		8.393	8.397
Number of	observations	1200	1200