Bayesian Categorical Data Analysis

Andy Grogan-Kaylor

27 Nov 2020 11:02:13

Introduction

. clear all

The Importance of Thinking About Prior Information

Thinking Through Bayesian Ideas

More About Priors From SAS Corporation

"In addition to data, analysts often have at their disposal useful auxiliary information about inputs into their model—for example, knowledge that high prices typically decrease demand or that sunny weather increases outdoor mall foot traffic. If used and incorporated correctly into the analysis, the auxiliary information can significantly improve the quality of the analysis. But this information is often ignored. Bayesian analysis provides a principled means of incorporating this information into the model through the prior distribution, but it does not provide a road map for translating auxiliary information into a useful prior."

-SAS Corporation

Formal Derivation of Bayes Theorem

Following inspiration from Kruschke (2011).

Probability	A	Not A
В	P_1	$\overline{P_2}$
Not B	P_3	P_4

Filling in the probabilities.

	Probability A	Not A
В	P(A,B)	P(notA, B)
Not B	P(A, notB)	P(notA, notB)

From the definition of conditional probability:

$$P(A|B) = P(A,B)/P(B)$$

$$P(B|A) = P(A,B)/P(A)$$

Then:

$$P(A|B)P(B) = P(A,B)$$

$$P(B|A)P(A) = P(A,B)$$

Then:

$$P(A|B)P(B) = P(B|A)P(A)$$

Then:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Applying the Derivation to Data Analysis

Probabi	lity	Data	No	t Data	
Hypothesis	,	D, H)		P(notI	, ,
Not Hypothesis	P(I	D, not H	(P(notI	O, not H)

From the definition of conditional probability:

$$P(D|H) = P(D,H)/P(H)$$

$$P(H|D) = P(D,H)/P(D)$$

Then:

$$P(D|H)P(H) = P(D,H)$$

$$P(H|D)P(D) = P(D,H)$$

Then:

$$P(D|H)P(H) = P(H|D)P(D)$$

Then:

$$P(H|D) = \frac{P(D|H)P(H)}{P(D)}$$

posterior \sim likelihood \times prior

Accepting the Null Hypothesis

We Are Directly Estimating The Probability of the Hypothesis Given The Data

- Could be large e.g. .8.
- Could be small e.g. .1.
- Could be effectively 0. (Essentially, we can accept a null hypothesis)

We Are *Not* Rejecting a Null Hypothesis

We are not imagining a hypothetical null hypothesis (that may not even be substantively meaningful), and asking the question of whether the data we observe are extreme enough that we wish to reject this null hypothesis.

- H_0 : $\bar{x} = 0$ or $\beta = 0$
- Posit H_A : $\bar{x} \neq 0$ or $\beta \neq 0$
- Observe data and calculate a test statistic (e.g. t). If test statistic > critical value, e.g. t > 1.96 then reject H_0 .
- We can never accept H_0 , only reject H_A .

Accepting Null Hypotheses

What is the effect on science and publication of having a statistical practice where we can never affirm $\bar{x} = 0$ or $\beta = 0$, but only reject $\bar{x} = 0$ or $\beta = 0$?

- Only affirm difference not similarity
- Publication bias

See https://agrogan1.github.io/Bayes/accepting-H0/accepting-H0.html

Bayesian statistics allow us to accept the null hypothesis H_0 .

Bayesian Categorical Data Analysis in Stata

```
. clear all
```

- . set seed 1234 // setting random seed is important!!!
- . use "../logistic-regression/GSSsmall.dta", clear

Frequentist Logistic Regression

```
. logit liberal i.race i.class

Iteration 0: log likelihood = -31538.733

Iteration 1: log likelihood = -31370.507

Iteration 2: log likelihood = -31369.841

Iteration 3: log likelihood = -31369.841
```

Logistic regression Number of obs = 53,625 LR chi2(5) = 337.78 Prob > chi2 = 0.0000 Log likelihood = -31369.841 Pseudo R2 = 0.0054

liberal	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
race						
black	. 4443531	.0272062	16.33	0.000	.39103	.4976762
other	.3190896	.0413275	7.72	0.000	.2380891	.4000901
class						
working class	1397848	.041515	-3.37	0.001	2211527	0584169
middle class	0117948	.0416509	-0.28	0.777	093429	.0698394
upper class	. 1512565	.0648962	2.33	0.020	.0240624	.2784507
_cons	9900441	.0397384	-24.91	0.000	-1.06793	9121582

Bayesian Logistic Regression

Takes a few minutes since using MCMC (5-10 minutes).

```
. sample 10 // Random Sample To Speed This Example: DON'T DO THIS IN PRACTICE!!! (58,332 observations deleted)
```

How do we interpret the result for some of the **social class** categories where the credibility interval includes 0?

```
. bayes: logit liberal i.race i.class
Burn-in ...
Simulation ...
Model summary
Likelihood:
  liberal _ logit(xb_liberal)
Prior:
  {liberal:i.race i.class _cons} ~ normal(0,10000)
                                                                                (1)
(1) Parameters are elements of the linear form xb_liberal.
Bayesian logistic regression
                                                     MCMC iterations
                                                                             12,500
Random-walk Metropolis-Hastings sampling
                                                     Burn-in
                                                                              2,500
                                                     MCMC sample size =
                                                                             10,000
                                                     Number of obs
                                                                              5,376
                                                     Acceptance rate
                                                                              .2312
                                                     Efficiency:
                                                                  min =
                                                                             .01541
                                                                  avg =
                                                                             .03017
Log marginal likelihood = -3193.2465
                                                                  max =
                                                                             .05577
                                                                  Equal-tailed
                                            MCSE
                                                               [95% Cred. Interval]
       liberal
                              Std. Dev.
                                                      Median
                      Mean
          race
                                                                           .6905559
        black
                   .5186618
                              .0888498
                                          .005436
                                                    .5162073
                                                                .3446927
                   .3315087
                              .1318099
                                          .006538
        other
                                                    .3340969
                                                               .0778656
                                                                           .5812581
         class
working class
                 -.2257059
                              .1359429
                                           .01095
                                                  -.2304211
                                                              -.4719162
                                                                           .0560403
```

Note: Default priors are used for model parameters.

.1280385

.2119785

.1277022

-.2159555

-.8561818

.1385091

Blocking May Improve Estimation

middle class

upper class

```
. * bayes, block({liberal:i.race}): logit liberal i.race i.class // blocking may improve estimatio
```

-.2177452

.1421824

.008896 -.8537522 -1.104622

-.4572864

-.2664372

.0353198

.5469788

-.6151415

.008659

.008976

Bayesian Logistic Regression With Priors

Priors:

- Encode prior information: strong theory; strong clinical or practice wisdom; strong previous empirical results
- May be helpful in quantitatively encoding the results of prior literature.

• May be especially helpful when your sample is small.

```
. bayes, normalprior(5): logit liberal i.race i.class
Burn-in ...
Simulation ...
Model summary
Likelihood:
 liberal _ logit(xb_liberal)
 {liberal:i.race i.class _cons} ~ normal(0,25)
                                                                              (1)
(1) Parameters are elements of the linear form xb_liberal.
Bayesian logistic regression
                                                   MCMC iterations =
                                                                          12,500
                                                                           2,500
Random-walk Metropolis-Hastings sampling
                                                   Burn-in
                                                   MCMC sample size =
                                                                          10,000
                                                   Number of obs
                                                                           5,376
                                                                            .2296
                                                   Acceptance rate =
                                                   Efficiency: min =
                                                                           .02373
                                                                           .03808
                                                                avg =
Log marginal likelihood = -3175.5153
                                                                           .05215
                                                                max =
```

					Equal-tailed	
liberal	Mean	Std. Dev.	MCSE	Median	[95% Cred.	<pre>Interval]</pre>
race						
	F4F6400	0046050	000705	E46E07E	2400746	6700007
black	.5156108	.0846052	.003705	.5165275	.3428716	.6703037
other	.3494915	. 1292596	.007216	.3517041	.0891921	.6044571
class						
working class	2177134	.1271378	.005941	2191734	4736636	.0299706
middle class	2111361	.1279262	.006815	209842	4649101	.0467745
upper class	.1408649	.2085374	.013539	.1413301	2595456	.5542024
_cons	8599554	.1222741	.006154	8616087	-1.102605	620957

Note: Default priors are used for model parameters.

MCMC vs. ML

- . clear all
- . set obs 100 number of observations (_N) was 0, now 100 $\,$
- . generate myestimate = rnormal() + 10 $\!\!\!//$ simulated values of estimate
- . summarize myestimate

Variable	0bs	Mean	Std. Dev.	Min	Max
myestimate	100	9.94191	.9294447	7.932717	12.31949

- . local mymean = r(mean)
- . kdensity myestimate , $\ensuremath{///}$
- > title("Likelihood of Estimate") ///
- > xtitle("Estimate") ytitle("Likelihood") ///
- > note("Vertical Line At Mean Value") ///
- > caption("ML gives point estimate; Bayes gives full range of distribution") $\ensuremath{///}$
- > xline(`mymean', lwidth(1) lcolor(gold)) scheme(michigan)
- . graph export MCMC-ML.png, width(500) replace (file MCMC-ML.png written in PNG format)

ML gives point estimate; Bayes gives full range of distribution

Figure 1: MCMC vs. ML

Full Distribution of Parameters

```
. clear all
. use "../logistic-regression/GSSsmall.dta", clear
. sample 10 // Random Sample for These Slides: DON'T DO THIS IN PRACTICE!!!
(58,332 observations deleted)
. bayes, normalprior(5): logit liberal i.race i.class
Burn-in ...
Simulation ...
Model summary
Likelihood:
  liberal _ logit(xb_liberal)
Prior:
  {liberal:i.race i.class _cons} ~ normal(0,25)
                                                                               (1)
(1) Parameters are elements of the linear form xb_liberal.
Bayesian logistic regression
                                                    MCMC iterations
                                                                           12,500
Random-walk Metropolis-Hastings sampling
                                                    Burn-in
                                                                            2,500
                                                                            10,000
                                                    MCMC sample size =
                                                                            5,383
                                                    Number of obs
                                                                            .2236
                                                    Acceptance rate
                                                    Efficiency: min =
                                                                            .02256
                                                                            .03414
                                                                 avg =
Log marginal likelihood = -3177.2034
                                                                            .05443
```

liberal	Mean	Std. Dev.	MCSE	Median	Equal- [95% Cred.	
race black other	.4851672 .0424599	.0829121 .135287	.004159	.4879013 .0432961	.3172142 223915	.6439872 .3134179
class						

working class	3129757	.1321655	.0088	3171116	5767932	0470307
middle class	2267685	.1281627	.008449	2287587	4673167	.0249752
upper class	1154092	.2013339	.010816	1178767	5131633	.2788442
_cons	7892161	.1229919	.007051	7913504	-1.037607	5534833

Note: Default priors are used for model parameters.

- . bayesgraph kdensity {liberal:2.race}, scheme(michigan)
- . graph export mybayesgraph.png, width(500) replace (file mybayesgraph.png written in PNG format)

Figure 2: Density Plot of Parameter