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Introduction
In this example, we explore the predictors of the count of Adverse Childhood Experiences (ACES) that children
experience. Using the general linear model framework, we could conceivably compare different statistical
models on several grounds.

1. Theoretical plausibility
2. Functional form of the dependent variable
3. Functional form of the entire model
4. Statistical criteria of fit.

Frequently, there is no one correct way to analyze data, and different statistical approaches need
to be weighed on multiple criteria to ascertain which approach(es) is / are appropriate.

Theoretical and Functional Concerns

Statistical
Model Stata Command

Theoretical
Rationale

Functional
Form of
Dependent
Variable

Functional Form
of Model

Coefficients
Imply

OLS regress Continuous
dependent
variable

−∞ < y <
∞

y is a linear
function of the
x’s

A 1 unit change
in x is associated
with a β change
in y

Logistic
Regression

logit Binary
dependent
variable

y = 0 or 1 ln
( p(y)

1−p(y)
)

is a
linear function of
x’s

A 1 unit change
in x is associated
with a β change
in the log odds
of y

logit, or A 1 unit change
in x is associated
with a eβ change
in the OR

Ordinal
logistic
regression

ologit Ordered
dependent
variable where
distance between
categories does
not matter

−∞ < y <
∞

ln
( p(y this level of the outcome)

p(y not this level of the outcome)
)

is a linear
function of x’s

A 1 unit change
in x is associated
with a β change
in the log odds
of y
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Statistical
Model Stata Command

Theoretical
Rationale

Functional
Form of
Dependent
Variable

Functional Form
of Model

Coefficients
Imply

ologit, or A 1 unit change
in x is associated
with a eβ change
in the OR

Multinomial
Logistic
Regression

mlogit Dependent
variable with
multiple
unordered
categories

−∞ < y <
∞

ln
( p(y another category)

p(y reference category)
)

is a linear
function of x’s

A 1 unit change
in x is associated
with a β change
in the log risk
ratio of y

mlogit, rr A 1 unit change
in x is associated
with a eβ change
in the RR

Poisson
Regression

poisson Dependent
variable
representing a
count

y is integer ≥
0

ln(ycount) is a
linear function of
x’s

A 1 unit change
in x is associated
with a β change
in the log count
of y

poisson, irr A 1 unit change
in x is associated
with a eβ change
in the IRR

Negative
Binomial
Regression

nbreg Dependent
variable
representing a
count

y is integer ≥
0

ln(ycount) is a
linear function of
x’s

A 1 unit change
in x is associated
with a β change
in the log count
of y

nbreg, irr A 1 unit change
in x is associated
with a eβ change
in the IRR

Assessing Model Fit
Get Data And Create Count of ACEs

. clear all

. use "NSCH_ACES.dta", clear

. egen acecount = anycount(ace*R), values(1) // generate count of ACES

Describe The Data
. describe acecount sc_sex sc_race_r higrade
Variable Storage Display Value

name type format label Variable label

acecount byte %8.0g ace1R ace3R ace4R ace5R ace6R ace7R ace8R ace9R
ace10R == 1

sc_sex byte %30.0g sc_sex_lab
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Sex of Selected Child
sc_race_r byte %48.0g sc_race_r_lab

Race of Selected Child, Detailed
higrade byte %61.0g higrade_lab

Highest Level of Education among Reported Adults

Explore Some Models
Only some of the above listed models are relevant. We estimate potentially relevant models. We
use quietly to suppress model output at this stage.

. quietly: regress acecount sc_sex i.sc_race_r i.higrade // OLS

. estimates store OLS

. quietly: ologit acecount sc_sex i.sc_race_r i.higrade // ordinal logit

. estimates store ORDINAL

. quietly: poisson acecount sc_sex i.sc_race_r i.higrade // Poisson

. estimates store POISSON

. quietly: nbreg acecount sc_sex i.sc_race_r i.higrade // Negative Binomial

. estimates store NBREG

Compare The Models Including Fit Measures
. estimates table OLS ORDINAL POISSON NBREG, var(25) star stats(N ll aic bic) equations(1)

Variable OLS ORDINAL POISSON NBREG

#1
sc_sex -.01358634 -.02856135 -.01282301 -.0127557

sc_race_r
Black or African Ameri.. .32583464*** .47967243*** .26627607*** .28235733***
American Indian or Ala.. .88542522*** .88482406*** .59710627*** .62278046***

Asian alone -.46503425*** -.76002818*** -.62438214*** -.62012779***
Native Hawaiian and Ot.. .2516065 .35416681 .20674094* .21879323

Some Other Race alone .07433855 .14197623* .06755212* .08062919
Two or More Races .33035205*** .39265187*** .28181254*** .28198179***

higrade
High school (includin..) .10021068 .17111252* .06324858* .06584405

More than high school -.45113751*** -.62649139*** -.37861085*** -.38098265***

_cons 1.411494*** .33994246*** .33915207***

/cut1 -.78624597***
/cut2 .65037457***
/cut3 1.5299647***
/cut4 2.2019291***
/cut5 2.8850071***
/cut6 3.6106908***
/cut7 4.4853373***
/cut8 5.9106719***
/cut9 7.5036903***

/lnalpha -.54430672***

Statistics
N 30530 30530 30530 30530

ll -52340.464 -42451.588 -44758.999 -42775.864
aic 104700.93 84939.175 89537.999 85573.728
bic 104784.19 85089.052 89621.263 85665.319

Legend: * p<0.05; ** p<0.01; *** p<0.001
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We note that the signs of coefficients (positive or negative) appear to be consistent across models. Generally,
but not universally, patterns of the statistical significance of coefficients are consistent across models.

In terms of log-likelihood a higher value indicates a better fit. We can also use the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC) to compare models. For AIC and BIC, lower
values indicate a better fit.

Thus, on strictly statistical grounds, the ordinal model would appear to provide the best fit, followed by
the negative binomial model, the Poisson model, and the OLS model. However, we should note that the
differences in fit between the ordinal, negative binomial and Poisson models are not exceptionally large. We
would also worry that any differences in fit that we do see might be due to overfitting in this particular
sample, or to capitalizing upon chance.

Lastly, we’d worry that the ordinal model might not satisfy the proportional hazards assumption, and should
examine this with a brant test.

We need to balance these differences in fit against the fact that theoretically, a count data model seems more
appropriate.

In this case, we would most likely choose to proceed with a count regression model.

Visualization
As a postscript we note that in choosing between models, it might be helpful to do some exploratory data
visualization. For example, are the relationships between x’s and y’s linear, or non-linear? Is the distribution
of our outcome variable normal or non-normal? While there are no strict rules of thumb here, visualization
of the data might help us to make a theoretical or conceptual case for one model over the other.
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