Contingency Tables

Andy Grogan-Kaylor

9 Sep 2023

Key Concepts and Commands

- Matrices of data
- Probabilities, risks, and odds
- χ^2 Tests
- tabulate x y, row col chi2

Flipping Two Coins

Figure 1: Coin Emoji From Apple

Figure 2: Coin Emoji From Apple

Setup

- . clear all
- . set seed 3846

Good value labels are **key** here.

```
. label define nickel ///
> 1 "heads for nickel" ///
> 0 "tails for nickel" // define value label

. label define quarter ///
> 1 "heads for quarter" ///
> 0 "tails for quarter" ///
> 0 "tails for quarter" // define value label

. set obs 1000 // 1000 observations
Number of observations (_N) was 0, now 1,000.

. * curiously it takes around 1000 obs for the proportions
. * below to "take hold"
```

- . generate nickel = rbinomial(1, .75) // unfair nickel
- . generate quarter = rbinomial(1, .5) // fair quarter
- . label values nickel nickel // assign value label
- . label values quarter quarter // assign value label

The Graph We Think We Want But Don't

- . graph bar, over(nickel) scheme(burd) title(Nickel) name(nickel)
- . graph bar, over(quarter) scheme(burd) title(Quarter) name(quarter)
- . graph combine nickel quarter, title(Nickel And Quarter) scheme(burd)
- . graph export unhelpfulgraph.png, width(500) replace

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/unhelpfulgraph.p > ng saved as PNG format

Figure 3: A Graph That May Not Be That Helpful

Crosstabulation

. tabulate nickel quarter, row col

	quarter		
nickel	tails for	heads for	Total

tails for nickel	104	140	244
	42.62	57.38	100.00
	21.62	26.97	24.40
heads for nickel	377	379	756
	49.87	50.13	100.00
	78.38	73.03	75.60
Total	481	519	1,000
	48.10	51.90	100.00
	100.00	100.00	100.00

Graphing (Mosaic Plot)

- . * ssc install spineplot // mosaicplots (spineplots)
- . * ssc install scheme-burd, replace // BuRd graph scheme
- . spineplot nickel quarter, scheme(burd)
- . graph export nickel-quarter.png, width(500) replace

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/nickel-quarter.p > ng saved as PNG format

Figure 4: Mosaic Plot

Bar Chart

Does a bar chart work to visualize these relationships?

- . graph bar, over(quarter) over(nickel) scheme(burd)
- . graph export nickel-quarter-bar1.png, width (500) replace file $\,$

/ Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/nickel-quarter-b > ar1.png saved as PNG format

Figure 5: Bar Chart 1

Bar Chart (2)

Option asyvars adds a crucial color element.

```
. graph bar, over(quarter) over(nickel) scheme(burd) asyvars % \left( \frac{1}{2}\right) =\left( \frac{1}{2}\right) \left( \frac
```

. graph export nickel-quarter-bar2.png, width(500) replace file $\,$

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/nickel-quarter-b > ar2.png saved as PNG format

Horizontal Bar Chart

And hbar may improve legibility even more.

```
. graph hbar, over(quarter) over(nickel) scheme(burd) asyvars
```

. graph export nickel-quarter-bar3.png, width (500) replace file $\,$

1961 French Skiiers

. clear all

Define Matrix

- . matrix input FrenchSkiiers = (31, 109 \ 17, 122)
- . matrix rownames FrenchSkiiers = Placebo AscorbicAcid

Figure 6: Bar Chart 2

Figure 7: Bar Chart 3

- . matrix colnames FrenchSkiiers = Cold NoCold
- . matrix list FrenchSkiiers

FrenchSkiiers[2,2]

Cold NoCold
Placebo 31 109
AscorbicAcid 17 122

Theme Music

Polo And Pan on Spotify

Try Making a Data Set From Matrix

. symat FrenchSkiiers, name(count) number of observations will be reset to 2 Press any key to continue, or Break to abort Number of observations (_N) was 0, now 2.

. list

	count1	count2
1.	31	109
2.	17	122

Enter Data By Hand

There are many alternative commands to do this, but the easiest way is using edit.

I have already done this. Note the structure of the data is different from above.

- . use "FrenchSkiiers.dta", clear
- . list // list the data

	Tx	Outcome	Count
1.	Ascorbic Acid	Cold	17
2.	Ascorbic Acid	No Cold	122
3.	Placebo	Cold	31
4.	Placebo	No Cold	109

Mosaic Plot

- . spineplot Tx Outcome, scheme(burd)
- . graph export FrenchSkiiers1.png, width(500) replace file

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/FrenchSkiiers1.p > ng saved as PNG format

Mosaic Plot (2)

- . spineplot Outcome Tx [fweight=Count], scheme(burd) // order matters to interpretability
- . graph export FrenchSkiiers2.png, width(500) replace file

Figure 8: Mosaic Plot Attempt 1

/Users/agrogan/Desktop/GitHub/newstuff/categorical/contingency-tables/FrenchSkiiers2.p > ng saved as PNG format

Definitions and Notation

Counts

 c_{ij} c_{ij} $c_{i\bullet}$

 c_{ij} c_{ij} $c_{i\bullet}$

 $c_{\bullet j}$ $c_{\bullet j}$ $c_{\bullet \bullet}$

Probabilities

 p_{ij} p_{ij} $p_{i\bullet}$

 p_{ij} p_{ij} $p_{i\bullet}$

 $p_{\bullet j}$ $p_{\bullet j}$ $p_{\bullet \bullet}$

Terms

 p_{ij} are joint probabilities.

 $p_{i\bullet}$ and $p_{\bullet j}$ are marginal probabilities.

 $p_{ij} \mid p_{i \bullet}$ and $p_{ij} \mid p_{\bullet j}$ are *conditional* probabilities.

Formulas

Counts

$$\sum_{1}^{i} \sum_{1}^{j} c_{ij} = N$$

Figure 9: Mosaic Plot Attempt 2

Probabilities

$$\sum_{1}^{i} \sum_{1}^{j} p_{ij} = 1.0$$

Expected Probabilities p and Counts m or Frequencies

$$p_{ij} = p_{i \bullet} p_{\bullet j}$$

$$m_{ij} = \frac{m_{i \bullet} m_{\bullet j}}{m_{\bullet \bullet}}$$

Observed counts are represented by c while expected counts are represented by m.

Fundamental Rule

 $conditional = joint \ / \ marginal$

. tabulate Tx Outcome [fweight = Count], cell row col

Key
frequency row percentage column percentage cell percentage

	Outcome		
Tx	No Cold	Cold	Total
Placebo	109 77.86 47.19 39.07	31 22.14 64.58 11.11	140 100.00 50.18 50.18
Ascorbic Acid	122	17	139

	87.77	12.23	100.00
	52.81	35.42	49.82
	43.73	6.09	49.82
Total	231	48	279
	82.80	17.20	100.00
	100.00	100.00	100.00
	82.80	17.20	100.00

- . display 6.09 / 49.82
- .12224006
- . display 17/139
- .12230216

Independence (Robert Mare)

If independence is true, then joint probabilities = products of marginal probabilities.

That is, under independence, the conditional distribution equals the marginal distribution.

Under independence, row membership provides no information about the column distribution; and column membership provides no information about the row distribution.

Independence is a model, which is never exactly true in the real world.

Observed vs. Expected

. tabulate Tx Outcome [fweight = Count]

	Outcome		
Tx	No Cold	Cold	Total
Placebo Ascorbic Acid	109 122	31 17	140 139
Total	231	48	279

- . scalar N = 31 + 109 + 17 + 122
- . scalar A = ((31 + 17)*(31 + 109)) / N // expected count
- . scalar B = ((31 + 109)*(109 + 122)) / N // expected count
- . scalar C = ((31 + 17) * (17 + 122)) / N // expected count
- . scalar D = ((17 + 122) * (109 + 122)) / N // expected count
- . matrix FS = (A, B \setminus C, D) // matrix of expected values
- . matrix rownames FS = Placebo AscorbicAcid // rownames
- . matrix colnames FS = Cold NoCold // column names
- . matrix list ${\sf FS}$

FS[2,2]

Cold NoCold
Placebo 24.086022 115.91398
AscorbicAcid 23.913978 115.08602

Chi-Square Test

$$\chi^2 = \Sigma \frac{(O-E)^2}{E}$$

. scalar chisquare = $(31 - 24.086022)^2 / 24.086022 + ///$

```
> (109 - 115.91398)^2 / 115.91398 + ///
> (17 - 23.913978)^2 / 23.913978 + ///
> (122 - 115.08602)^2 / 115.08602
```

Compare With Tabulate

- . use "FrenchSkiiers.dta", clear
- . tabulate Tx Outcome [fweight = Count], row col chi2

Key	
fre	equency
row pe	ercentage
column	percentage

	Outcome			
Tx	No Cold	Cold	Total	
Placebo	109	31	140	
	77.86	22.14	100.00	
	47.19	64.58	50.18	
Ascorbic Acid	122	17	139	
	87.77	12.23	100.00	
	52.81	35.42	49.82	
Total	231	48	279	
	82.80	17.20	100.00	
	100.00	100.00	100.00	
Pears	son chi2(1) =	4.8114	Pr = 0.028	

Risk Differences and Risk Ratios (Relative Risk)

Following Viera, 2008:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

	Develop (Outcome	Do Not Develop Outcome
Exposed	Į	a	b
Not Exp	osed	\mathbf{c}	d

$$\begin{split} R &= \frac{a}{a+b} \text{ (in Exposed)} \\ RR &= \frac{\text{risk in exposed}}{\text{risk in not exposed}} = \frac{a/(a+b)}{c/(c+d)} \end{split}$$

Calculating a Risk Ratio

. tabulate Outcome Tx [fweight = Count]

Tx			
Outcome	Placebo	Ascorbic	Total
No Cold	109	122	231
Cold	31	17	48
Total	140	139	279
			l

[.] scalar list chisquare
chisquare = 4.8114124

. tabulate Outcome Tx [fweight = Count], col

Key	
frequency column percentage	

Tx					
Outcome	Placebo	Ascorbic	Total		
No Cold	109	122	231		
	77.86	87.77	82.80		
Cold	31	17	48		
	22.14	12.23	17.20		
Total	140	139	279		
	100.00	100.00	100.00		

- . display 31/140
- .22142857
- . display 17/139 .12230216
- . display (17/139) / (31/140) .55233233

. csi 17 31 122 109 // also has an intuitive dialog box

	Exposed	Unexposed	Total	
Cases Noncases	17 122	31 109	48 231	
Total	139	140	279	
Risk	.1223022	.2214286	.172043	
	Point	estimate	[95% conf	. interval]
Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop	.5	991264 523323 476677 230316	1868592 .3209178 .0493797	0113937 .9506203 .6790822

chi2(1) = 4.81 Pr> chi2 = 0.0283

Odds Ratios

	Develop Ou	ıtcome	Do Not Develop Outcome
Exposed	l	a	b
Not Exp	oosed	\mathbf{c}	d

OR =

 $\frac{\rm odds\ that\ exposed\ person\ develops\ outcome}{\rm odds\ that\ unexposed\ person\ develops\ outcome}$

$$= \frac{\frac{a}{a+b}/\frac{b}{a+b}}{\frac{c}{c+d}/\frac{d}{c+d}} = \frac{a/b}{c/d} = \frac{ad}{bc}$$

Properties of the Odds Ratio (Robert Mare)

In general for the 2 X 2 Table,

0 < OR < 1

indicates that one row is less likely to make the first response than the other row.

$1 < OR < \infty$

indicates that one row is more likely to make the first response than the other row.

Calculate Odds Ratio

. tabulate Tx Outcome [fweight = Count]

	Outcome			
Tx	No Cold	Cold	Total	
Placebo Ascorbic Acid	109 122	31 17	140 139	
Total	231	48	279	

- . display (17 * 109)/(122 * 31)
- .48995241

. csi 17 31 122 109, or // also has an intuitive dialog box

	Exposed	Unexposed	Total		
Cases	17	31	48		
Noncases	122	109	231		
Total	139	140	279		
Risk	.1223022	.2214286	.172043		
	Point	estimate	[95% conf	interval]	
Risk difference	09	991264	1868592	0113937	
Risk ratio	.5523323		.3209178	.9506203	
Prev. frac. ex.	.44	176677	.0493797	.6790822	
Prev. frac. pop	.22	230316			
Odds ratio	.48	399524	.2588072	.9282861	(Cornfield)

chi2(1) = 4.81 Pr>chi2 = 0.0283