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1 The Data

We use the French Skiiers data that we have used in other examples.

use "FrenchSkiiers.dta"

2 Contingency Table

tabulate Tx Outcome [fweight = Count]

| Outcome
Tx | No Cold Cold | Total

--------------+----------------------+----------
Placebo | 109 31 | 140

Ascorbic Acid | 122 17 | 139
--------------+----------------------+----------

Total | 231 48 | 279

For the sake of teaching and exposition, I re-arrange the numbers slightly.
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Develop Outcome Do Not Develop Outcome

Exposed a b
Not Exposed c d

Cold No Cold

Ascorbic Acid 17 (a) 122 (b)
Placebo 31 (c) 109 (d)

2.1 Risk (𝑅) and Risk Differences (𝑅𝐷)

𝑅 = 𝑎
𝑎+𝑏 (in Exposed)

𝑅𝐷 =
risk in exposed − risk in not exposed =
𝑎/(𝑎 + 𝑏) − 𝑐/(𝑐 + 𝑑) =
(17/139) − (31/140) =
−.09912641

How do we talk about this risk difference?

2.2 Odds Ratios (𝑂𝑅)

Develop Outcome Do Not Develop Outcome

Exposed a b
Not Exposed c d

𝑂𝑅 =
odds that exposed person develops outcome

odds that unexposed person develops outcome =
𝑎

𝑎+𝑏 / 𝑏
𝑎+𝑏

𝑐
𝑐+𝑑 / 𝑑

𝑐+𝑑
=

𝑎/𝑏
𝑐/𝑑 =
𝑎𝑑
𝑏𝑐 =
(17 ∗ 109)/(122 ∗ 31) =
.4899526

How do we talk about this odds ratio?
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3 Logistic Regression

As discussed, the formula for logistic regression is:

ln ( 𝑝(outcome)
1 − 𝑝(outcome)) = 𝛽0 + 𝛽1𝑥

Here 𝑝(outcome) is the probability of the outcome.
𝑝(outcome)

1−𝑝(outcome) is the odds of the outcome.

Hence, ln ( 𝑝(outcome)
1−𝑝(outcome))1 is the log odds of the outcome.

The logistic regression equation has the desired functional form.

The logistic regression equation is appropriate to reflect changes in the probability of an outcome that can
be either 1 or 0.

Figure 1: Logistic Curve

Logistic regression returns a 𝛽 coefficient for each independent variable 𝑥.
These 𝛽 coefficients can then be exponentiated to obtain odds ratios: 𝑂𝑅 = 𝑒𝛽

Exponentiation “undoes” the logarithmic transformation.

If ln(𝑦) = 𝑥, then 𝑦 = 𝑒𝑥

So, if … ln ( 𝑝(outcome)
1−𝑝(outcome)) = 𝛽0 + 𝛽1𝑥 then 𝑝(outcome)

1−𝑝(outcome) = 𝑒𝛽0+𝛽1𝑥 = 𝑒𝛽0 × 𝑒𝛽1𝑥

We see that the odds ratio given by logistic regression, .4899526, is the exact same as that given by
manually calculating the odds ratio from a contingency table.

An advantage of logistic regression is that it can be extended to multiple independent variables.

logit Outcome Tx [fweight = Count], or

1It is sometimes useful to think of the log odds as a transformed dependent variable. We have transformed the dependent variable so
that it can be expressed as a linear function of the independent variables, e.g.: 𝛽0 + 𝛽1𝑥
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Iteration 0: Log likelihood = -128.09195
Iteration 1: Log likelihood = -125.68839
Iteration 2: Log likelihood = -125.65611
Iteration 3: Log likelihood = -125.6561

Logistic regression Number of obs = 279
LR chi2(1) = 4.87
Prob > chi2 = 0.0273

Log likelihood = -125.6561 Pseudo R2 = 0.0190

------------------------------------------------------------------------------
Outcome | Odds ratio Std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------
Tx | .4899526 .1613519 -2.17 0.030 .256942 .9342712

_cons | .2844037 .0578902 -6.18 0.000 .1908418 .423835
------------------------------------------------------------------------------
Note: _cons estimates baseline odds.

How do we talk about this odds ratio? How would we talk about it if it was > 1.0? > 2.0
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