From Contingency Table To Logistic Regression

With the French Skiiers Data

Andy Grogan-Kaylor

2023-09-26

Table of contents

1	The Data	1
	Contingency Table 2.1 Risk (R) and Risk Differences (RD) 2.2 Odds Ratios (OR)	
3	Logistic Regression	3

1 The Data

We use the French Skiiers data that we have used in other examples.

use "FrenchSkiiers.dta"

2 Contingency Table

tabulate Tx Outcome [fweight = Count]

Tx	•	Outco Cold	me Cold	Total
Placebo Ascorbic Acid		109 122	31 17	•
Total		231	48	279

For the sake of teaching and exposition, I re-arrange the numbers slightly.

	Develop Outcome	Do Not Develop Outcome
Exposed	а	b
Not Exposed	С	d

Cold	No Cold
17 (a) 31 (c)	122 (b) 109 (d)

2.1 Risk (R) and Risk Differences (RD)

 $R = rac{a}{a+b}$ (in Exposed)

RD =

risk in exposed - risk in not exposed =

a/(a+b)-c/(c+d) =

(17/139) - (31/140) =

-.09912641

How do we talk about this risk difference?

2.2 Odds Ratios (OR)

	Develop Outcome	Do Not Develop Outcome
Exposed	а	b
Not Exposed	С	d

$$OR =$$

 $\frac{\rm odds \ that \ exposed \ person \ develops \ outcome}{\rm odds \ that \ unexposed \ person \ develops \ outcome} =$

 $\frac{\frac{a}{a+b}/\frac{b}{a+b}}{\frac{c}{c+d}/\frac{d}{c+d}} =$ $\frac{a/b}{c/d} =$ $\frac{ad}{bc} =$ (17 * 109)/(122 * 31) =

.4899526

How do we talk about this odds ratio?

3 Logistic Regression

As discussed, the formula for logistic regression is:

$$\ln \Big(\frac{p(\mathsf{outcome})}{1 - p(\mathsf{outcome})} \Big) = \beta_0 + \beta_1 x$$

Here p(outcome) is the probability of the outcome.

 $\frac{p(\text{outcome})}{1-p(\text{outcome})}$ is the *odds* of the outcome.

Hence, $\ln \left(\frac{p(\text{outcome})}{1-p(\text{outcome})}\right)^1$ is the *log odds* of the outcome.

The logistic regression equation has the desired functional form.

The logistic regression equation is appropriate to reflect changes in the probability of an outcome that can be either 1 or 0.

Logistic regression returns a β coefficient for each independent variable x.

These β coefficients can then be exponentiated to obtain odds ratios: $OR = e^{\beta}$

Exponentiation "undoes" the logarithmic transformation.

If $\ln(y) = x$, then $y = e^x$ So, if ... $\ln\left(\frac{p(\text{outcome})}{1-p(\text{outcome})}\right) = \beta_0 + \beta_1 x$ then $\frac{p(\text{outcome})}{1-p(\text{outcome})} = e^{\beta_0 + \beta_1 x} = e^{\beta_0} \times e^{\beta_1 x}$

We see that the odds ratio given by logistic regression, .4899526, is the exact same as that given by manually calculating the odds ratio from a contingency table.

An advantage of logistic regression is that it can be extended to multiple independent variables.

```
logit Outcome Tx [fweight = Count], or
```

¹It is sometimes useful to think of the *log odds* as a *transformed dependent variable*. We have transformed the dependent variable so that it can be expressed as a linear function of the independent variables, e.g.: $\beta_0 + \beta_1 x$

<pre>Iteration 0: Log likelihood = -128.09195 Iteration 1: Log likelihood = -125.68839 Iteration 2: Log likelihood = -125.65611 Iteration 3: Log likelihood = -125.6561</pre>						
Logistic regression					Number of ob LR chi2(1)	
					Prob > chi2	
Outcome		Std. err.			[95% conf.	interval]
Tx	.4899526					.9342712
_cons	.2844037	.0578902	-6.18	0.000	.1908418	.423835

Note: _cons estimates baseline odds.

How do we talk about this odds ratio? How would we talk about it if it was > 1.0? > 2.0