From Contingency Table To Logistic Regression

With the French Skiiers Data

Andy Grogan-Kaylor

2023-09-26

Table of contents

1 The Data

We use the French Skiiers data that we have used in other examples.

use "FrenchSkiiers.dta"

2 Contingency Table

tabulate Tx Outcome [fweight = Count]

For the sake of teaching and exposition, I re-arrange the numbers slightly.

2.1 Risk (R) and Risk Differences (RD)

 $R = \frac{a}{a+b}$ (in Exposed)

 $RD =$

risk in exposed $-$ risk in not exposed $=$

 $a/(a + b) - c/(c + d) =$

 $(17/139) - (31/140) =$

−.09912641

How do we talk about this *risk difference*?

2.2 Odds Ratios ()

$$
OR =
$$

 $\,$ odds that exposed person develops outcome $\, = \,$ odds that unexposed person develops outcome $\, = \,$

 $\frac{\frac{a}{a+b}/\frac{b}{a+b}}{\frac{c}{c+d}/\frac{d}{c+d}} =$ $\frac{a/b}{c/d} =$ $\frac{ad}{bc} =$ $(17 * 109)/(122 * 31) =$

.4899526

How do we talk about this *odds ratio*?

3 Logistic Regression

As discussed, the formula for logistic regression is:

$$
\ln\left(\frac{p(\text{outcome})}{1-p(\text{outcome})}\right) = \beta_0 + \beta_1 x
$$

Here p (outcome) is the probability of the outcome.

 p (outcome) $\frac{p(\text{outcome})}{1-p(\text{outcome})}$ is the *odds* of the outcome.

Hence, $\ln\left(\frac{p(\text{outcome})}{1-p(\text{outcome})}\right)$ $1-p$ (outcome)) [1](#page-2-1) is the *log odds* of the outcome.

The logistic regression equation has the desired functional form.

The logistic regression equation is appropriate to reflect changes in the probability of an outcome that can be either 1 or 0.

Logistic regression returns a β coefficient for each independent variable x .

These β coefficients can then be *exponentiated* to obtain *odds ratios*: $OR = e^{\beta}$

 \bullet Exponentiation "undoes" the logarithmic transformation.

If $ln(y) = x$, then $y = e^x$ So, if … ln (p (outcome) $\frac{p(\textsf{outcome})}{1-p(\textsf{outcome})}\Big) = \beta_0 + \beta_1 x$ then $\frac{p(\textsf{outcome})}{1-p(\textsf{outcome})} = e^{\beta_0+\beta_1 x} = e^{\beta_0} \times e^{\beta_1 x}$

We see that the odds ratio given by logistic regression, .4899526, is the exact same as that given by manually calculating the odds ratio from a contingency table.

An advantage of logistic regression is that it can be extended to multiple independent variables.

```
logit Outcome Tx [fweight = Count], or
```
¹It is sometimes useful to think of the *log odds* as a transformed dependent variable. We have transformed the dependent variable so that it can be expressed as a linear function of the independent variables, e.g.: $\beta_0 + \beta_1 x$

Note: _cons estimates baseline odds.

How do we talk about this *odds ratio*? How would we talk about it if it was > 1.0? > 2.0