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1 The Data
We use the French Skiiers data that we have used in other examples.

use "FrenchSkiiers.dta"

2 Contingency Table

tabulate Tx Outcome [fweight = Count]

| Outcome
Tx | No Cold Cold | Total
______________ o e e e e
Placebo | 109 31 | 140
Ascorbic Acid | 122 17 | 139
______________ e
Total | 231 48 | 279

For the sake of teaching and exposition, | re-arrange the numbers slightly.
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Develop Outcome Do Not Develop Outcome

Exposed a b
Not Exposed c d
Cold No Cold
Ascorbic Acid 17 (a) 122 (b)
Placebo 31(c) 109 (d)

2.1 Risk (R) and Risk Differences (R D)

R = % (in Exposed)
RD =

risk in exposed — risk in not exposed =

a/(a+b)—c/(c+d)=
(17/139) — (31/140) =
—.09912641

How do we talk about this risk difference?

2.2 0dds Ratios (OR)

OR =

Develop Outcome Do Not Develop Outcome

Exposed a b
Not Exposed c d

odds that exposed person develops outcome

odds that unexposed person develops outcome

a b

e/ am
L/L -
ct+d/! c+d
a/b _
c/d
ad _
be

(17 % 109) /(122 % 31) =
4899526

How do we talk about this odds ratio?



3 Logistic Regression

As discussed, the formula for logistic regression is:

( p(outcome)
1 — p(outcome)

>:50+51x

Here p(outcome) is the probability of the outcome.

(outcome)
m is the odds of the outcome.

p(outcome)

Hence, In <W

)1 is the log odds of the outcome.

@ The logistic regression equation has the desired functional form.

The logistic regression equation is appropriate to reflect changes in the probability of an outcome that can
be either 1 or 0.

Logistic Curve

probability

Figure 1: Logistic Curve

Logistic regression returns a 3 coefficient for each independent variable z.

These 3 coefficients can then be exponentiated to obtain odds ratios: OR = e”

@ Exponentiation “undoes” the logarithmic transformation.

If In(y) = z, theny = ¢”

: p(outcome) _ p(outcome) + _
SO, |f hl (W) = /80 + 51$ then m — 650 Blﬂf — 660 X 66132

We see that the odds ratio given by logistic regression, .4899526, is the exact same as that given by
manually calculating the odds ratio from a contingency table.

An advantage of logistic regression is that it can be extended to multiple independent variables.

logit Outcome Tx [fweight = Count], or

TIt is sometimes useful to think of the log odds as a transformed dependent variable. We have transformed the dependent variable so
that it can be expressed as a linear function of the independent variables, e.g.: 8, + 8,z



Iteration 0: Log likelihood = -128.09195
Iteration 1: Log likelihood = -125.68839
Iteration 2: Log likelihood = -125.65611
Iteration 3: Log likelihood = -125.6561
Logistic regression Number of obs = 279
LR chi2(1) =  4.87
Prob > chi2 = 0.0273
Log likelihood = -125.6561 Pseudo R2 = 0.0190
Outcome | Odds ratio  Std. err. z P>|z| [95% conf. intervall
_____________ - =
Tx | .4899526 .1613519 -2.17 0.030 .256942 .9342712
_cons | . 2844037 .0578902 -6.18 0.000 .1908418 .423835

Note: _cons estimates baseline odds.

How do we talk about this odds ratio? How would we talk about it if it was > 1.0? > 2.0
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