Some Stuff About Logarithms

Andy Grogan-Kaylor

2023 - 11 - 26

Table of contents

1	Introduction (The Exponential Function)	1
2	A Definition of the Logarithm	2
3	A Definition of the Natural Logarithm	2
4	Exponential Regression	4
5	Logistic Regression	4
6	Logarithmic Spiral	5

1 Introduction (The Exponential Function)

We begin with the exponential function:

 $y = base^{exponent}$

The *exponent* tells us how many times to multiply the base by itself to get the result.

For example: $2^3 = 8$ because $2 \times 2 \times 2 = 8$

```
twoway function y = 2^x, lwidth(thick) ///
title("Exponential Function") subtitle("With Base 2") ///
range(-10 10)
graph export exponential0.png, replace
```


Figure 1: Graph of exponential function with base 2

2 A Definition of the Logarithm

We then consider the logarithm.

If

$$y = b^x$$

then

•

$$\log_{h}(y) = x$$

In words: If number = base $^{\rm exponent}$ then $\log_{\rm base}({\rm number}) = {\rm exponent}.$

For example, $2^3 = 8$, therefore $log_2 8 = 3$.

The logarithm answers the question: What is the power to which we have to raise the number to get the result?

The logarithm may also be thought of as the inverse of the exponential function.

```
twoway function y = ln(x)/ln(2), lwidth(thick) ///
title("Logarithmic Function") subtitle("Base 2") ///
range(-10 10)
```

graph export logarithmic0.png, replace

3 A Definition of the Natural Logarithm

For deep mathematical reasons, it is often useful to use logarithms with base e which is often termed the *natural logarithm*, written ln

Figure 2: Graph of logarithmic function with base 2

e is a kind of fundamental mathematical constant, like π , but without the easy geometric definition that π has. (For any \bigcirc , $\pi = \frac{\text{circumference}}{\text{diameter}}$.)

e is approximately equal to 2.71828...

If

$$y = e^x$$

then

```
\ln(y) = x
```

twoway function y = exp(x), lwidth(thick) ///
title("Exponential Function") subtitle("Base e") ///
range(-10 10)

```
graph export exponential.png, replace
```


Figure 3: Graph of exponential function with base e

```
twoway function y = ln(x), lwidth(thick) ///
title("Logarithmic Function") subtitle("Base e") ///
range(-10 10)
```

graph export logarithmic.png, replace

Figure 4: Graph of logarithmic function with base e

4 Exponential Regression

In categorical data analysis–especially later in the course–we are often thinking about some equation like $\ln(y) = \beta x$. This is equivalent to $y = e^{\beta x}$ so many models–particularly later in the course–will have us thinking about *exponential* relationships.

5 Logistic Regression

Early on in this course, we will think about logistic regression. In logistic regression, we start by thinking about the on the *odds* of our outcome:

$$\frac{p(y)}{1-p(y)}$$

We will be working with the *log odds*:

$$\ln(\frac{p(y)}{1-p(y)}) = x$$

To graph these log odds, we need to solve for p(y):

 $p(y) = \frac{e^x}{1 + e^x}$ twoway function y = exp(x)/(1 + exp(x)), lwidth(thick) /// title("Logistic Function") /// range(-10 10)

graph export logistic.png, replace

Figure 5: Logistic curve

6 Logarithmic Spiral

An interesting sidenote is that the logarithm forms the basis of the logarithmic spiral. The equation for a logarithmic spiral in polar coordinates is: $r = ae^{b\theta}$, where θ is the angle, r is the radius, and a and b are constants.

Figure 6: Desmos Graph Logarithmic Spiral

Logarithmic spirals can be found in nature in the *nautilus shell*, and in *sunflowers*.

Figure 7: Nautilus Shell, Courtesy Wikipedia

Figure 8: Sunflower, Courtesy Wikipedia