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Background

In linear regression, interpretation of coefficients is somewhat straightforward. We might first estimate:

y = β0 + β1x1 + ei

and then:

y = β0 + β1x1 + β2x2 + ei

and would say–in the second equation–that β1 is an estimate that accounts for the association of x2 and y.

However, in logistic regression, the situation is somewhat different.

As Allison (1999) notes:

Unfortunately, there is a potential pitfall in cross-group comparisons of logit or probit coefficients
that has largely gone unnoticed. Unlike linear regression coefficients, coefficients in these binary
regression models are confounded with residual variation (unobserved heterogeneity). Differences
in the degree of residual variation across groups can produce apparent differences in coefficients
that are not indicative of true differences in causal effects.

While the mathematics of this relationship are somewhat difficult–though clearly presented in Allison’s
(1999) article–the finding can be easily seen in simulated data.

Simulate Data

. clear all

. cd "/Users/agrogan/Desktop/newstuff/categorical/logistic-and-covariates"
/Users/agrogan/Desktop/newstuff/categorical/logistic-and-covariates

. set obs 10000
number of observations (_N) was 0, now 10,000

. set seed 3846 // random seed

. generate x1 = rnormal() // normally distributed x

. histogram x1, scheme(michigan)
(bin=40, start=-3.7857256, width=.19587822)

. graph export histogram1.png, width(500) replace
(file histogram1.png written in PNG format)
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Figure 1: Histogram of x1

. generate x2 = rnormal() // normally distributed z

. histogram x2, scheme(michigan)
(bin=40, start=-3.9428685, width=.19152238)

. graph export histogram2.png, width(500) replace
(file histogram2.png written in PNG format)

Figure 2: Histogram of x2

. generate e = rnormal(0, .5) // normally distributed error

Since they were generated independently, x1 and x2 are relatively uncorrelated.

. corr x1 x2 // x1 and x2 are *mostly* uncorrelated
(obs=10,000)

x1 x2

x1 1.0000
x2 0.0150 1.0000

Linear Regression

. generate y1 = x1 + x2 + e // dependent variable

. regress y1 x1
Source SS df MS Number of obs = 10,000

F(1, 9998) = 8571.07
Model 10888.525 1 10888.525 Prob > F = 0.0000

Residual 12701.2625 9,998 1.27038033 R-squared = 0.4616
Adj R-squared = 0.4615

Total 23589.7876 9,999 2.35921468 Root MSE = 1.1271

y1 Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.024698 .0110682 92.58 0.000 1.003002 1.046394
_cons .0013059 .0112712 0.12 0.908 -.020788 .0233997

A 1 unit change in x1 is associated with a 1.02 change in y1.
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. est store OLS1 // store estimates

. regress y1 x1 x2
Source SS df MS Number of obs = 10,000

F(2, 9997) = 41868.07
Model 21073.8459 2 10536.9229 Prob > F = 0.0000

Residual 2515.94171 9,997 .251669672 R-squared = 0.8933
Adj R-squared = 0.8933

Total 23589.7876 9,999 2.35921468 Root MSE = .50167

y1 Coef. Std. Err. t P>|t| [95% Conf. Interval]

x1 1.009826 .0049269 204.96 0.000 1.000169 1.019484
x2 1.006154 .0050014 201.17 0.000 .9963505 1.015958

_cons .0015213 .0050167 0.30 0.762 -.0083125 .011355

A 1 unit change in x1 is associated with a 1.01 change in y1. The slight change in coefficient for
x1 is likely due to the very slight correlation between x1 and x2.

. est store OLS2 // store estimates

Note that the coefficients for x1 in the two models are relatively close.

. estimates table OLS1 OLS2, b(%7.4f) star // table comparing estimates

Variable OLS1 OLS2

x1 1.0247*** 1.0098***
x2 1.0062***

_cons 0.0013 0.0015

legend: * p<0.05; ** p<0.01; *** p<0.001

Logistic Regression

. generate prob_y2 = exp(x1 + x2 + e) / (1 + exp(x1 + x2 + e)) // dependent variable

. recode prob_y2 (0/.5 =0)(.5/1 = 1), generate(y2) // recode probabilites as observed val
> ues
(10000 differences between prob_y2 and y2)

. logit y2 x1
Iteration 0: log likelihood = -6931.3566
Iteration 1: log likelihood = -5193.5531
Iteration 2: log likelihood = -5191.3673
Iteration 3: log likelihood = -5191.3654
Iteration 4: log likelihood = -5191.3654
Logistic regression Number of obs = 10,000

LR chi2(1) = 3479.98
Prob > chi2 = 0.0000

Log likelihood = -5191.3654 Pseudo R2 = 0.2510

y2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 1.529607 .0329772 46.38 0.000 1.464973 1.594241
_cons .0205374 .0240145 0.86 0.392 -.0265302 .067605

A 1 unit change in x1 is associated with a 1.53 change in the log odds of y2.
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. est store logit1

. logit y2 x1 x2
Iteration 0: log likelihood = -6931.3566
Iteration 1: log likelihood = -2326.0511
Iteration 2: log likelihood = -2285.4234
Iteration 3: log likelihood = -2285.2877
Iteration 4: log likelihood = -2285.2877
Logistic regression Number of obs = 10,000

LR chi2(2) = 9292.14
Prob > chi2 = 0.0000

Log likelihood = -2285.2877 Pseudo R2 = 0.6703

y2 Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 3.694725 .0867616 42.58 0.000 3.524675 3.864774
x2 3.716715 .0876762 42.39 0.000 3.544873 3.888557

_cons .0369852 .0375883 0.98 0.325 -.0366864 .1106569

Note: 6 failures and 4 successes completely determined.

A 1 unit change in x1 is associated with a 3.69 change in the log odds of y2.

. est store logit2

Note that the coefficients for x1 in the two models are rather different, even though x1 and x2
have, by definition, a very very small correlation.

. estimates table logit1 logit2, b(%7.4f) star // table comparing estimates

Variable logit1 logit2

x1 1.5296*** 3.6947***
x2 3.7167***

_cons 0.0205 0.0370

legend: * p<0.05; ** p<0.01; *** p<0.001
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