# Logistic Regression - More Complicated Margins Plots

Some Ideas for Plotting More Complicated Margins Plots

Andy Grogan-Kaylor 2024-04-29

### **Table of contents**

| 1 | Get Data                                                                                        | 1 |
|---|-------------------------------------------------------------------------------------------------|---|
| 2 | describe The Data                                                                               | 2 |
| 3 | Estimate logit                                                                                  | 3 |
| 4 | margins                                                                                         | 4 |
| 5 | use Data File With margins                                                                      | 5 |
| 6 | Make The Graph!                                                                                 | 6 |
|   | <b>₽</b> Tip                                                                                    |   |
|   | This tutorial builds off of some of the ideas first presented in this tutorial on interactions. |   |

#### 1 Get Data

library(Statamarkdown)

We start by obtaining  $simulated\ data$  from StataCorp.

#### clear all

use http://www.stata-press.com/data/r15/margex, clear

(Artificial data for margins)

#### 2 describe The Data

The variables are as follows:

#### describe

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-plotting- > margins\profile.do .

Contains data from http://www.stata-press.com/data/r15/margex.dta

Observations: 3,000 Artificial data for margins

Variables: 11 27 Nov 2016 14:27

| Variable name                        | Storage<br>type                  | Display<br>format                                           | Value<br>label | Variable label |
|--------------------------------------|----------------------------------|-------------------------------------------------------------|----------------|----------------|
| y outcome sex group age distance ycn | float byte byte byte float float | %6.1f<br>%2.0f<br>%6.0f<br>%2.0f<br>%3.0f<br>%6.2f<br>%6.1f | sexlbl         |                |
| yc<br>treatment<br>agegroup<br>arm   | float<br>byte<br>byte<br>byte    | %6.1f<br>%2.0f<br>%8.0g<br>%8.0g                            | agelab         |                |

Sorted by: group

# 3 Estimate logit

We then run a logistic regression model in which outcome is the dependent variable. sex, age and group are the independent variables. We estimate an interaction of sex and age.

We note that the regression coefficient for the interaction term is not statistically significant.

```
logit outcome sex##c.age i.group
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-plotting> margins\profile.do .

```
Iteration 0: Log likelihood = -1366.0718
Iteration 1: Log likelihood = -1118.129
Iteration 2: Log likelihood = -1070.8227
Iteration 3: Log likelihood = -1068.0102
Iteration 4: Log likelihood = -1067.99
Iteration 5: Log likelihood = -1067.99
```

Logistic regression Number of obs = 3,000LR chi2(5) = 596.16

Prob > chi2 = 0.0000 Pseudo R2 = 0.2182

Log likelihood = -1067.99

| outcome   | Coefficient  | Std. err. | Z      | P> z  | [95% conf. | interval] |
|-----------|--------------|-----------|--------|-------|------------|-----------|
| sex       | <br>         |           |        |       |            |           |
| female    | .5565025     | .6488407  | 0.86   | 0.391 | 7152019    | 1.828207  |
| age       | .0910807<br> | .0113215  | 8.04   | 0.000 | .0688909   | .1132704  |
| sex#c.age |              |           |        |       |            |           |
| female    | 001211<br>   | .0134012  | -0.09  | 0.928 | 0274769    | .025055   |
| group     |              |           |        |       |            |           |
| 2         | 5854237      | .1349791  | -4.34  | 0.000 | 8499779    | 3208696   |
| 3         | -1.355227    | .2965301  | -4.57  | 0.000 | -1.936416  | 7740391   |
|           |              |           |        |       |            |           |
| _cons     | -5.592272    | .5583131  | -10.02 | 0.000 | -6.686545  | -4.497998 |

## 4 margins

I use the margins command to estimate predicted probabilities at different values of sex and age.

I use the pwcompare option to get pairwise comparisons. This gives us a lot of output, which I have made *scrollable* to improve readability.

I'm not going to want to graph all of this output, so I'm saving these margins to a data file from which I can make a customized graph.

```
margins sex, at(age = (20 30 40 50 60)) pwcompare saving(marginsdemo.dta, replace)
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-plotting> margins\profile.do . margins sex, at(age = (20 30 40 50 60)) pwcompare saving(marginsdemo.org)
> lace)

Pairwise comparisons of predictive margins

Number of obs = 3,000

Model VCE: OIM

Expression: Pr(outcome), predict()

1.\_at: age = 20 2.\_at: age = 30 3.\_at: age = 40 4.\_at: age = 50 5.\_at: age = 60

| I                        | Delta-method |           | Unadjusted |           |  |
|--------------------------|--------------|-----------|------------|-----------|--|
| 1                        | Contrast     | std. err. | [95% conf. | interval] |  |
| +-                       |              |           |            |           |  |
| _at#sex                  |              |           |            |           |  |
| (1#female) vs (1#male)   | .0102685     | .0072777  | 0039956    | .0245325  |  |
| (2#male) vs (1#male)     | .0214202     | .0029968  | .0155466   | .0272938  |  |
| (2#female) vs (1#male)   | .044561      | .0099352  | .0250884   | .0640335  |  |
| (3#male) vs (1#male)     | .0702044     | .0066437  | .0571829   | .0832258  |  |
| (3#female) vs (1#male)   | .1179267     | .0122683  | .0938813   | .1419721  |  |
| (4#male) vs (1#male)     | .1698721     | .0172084  | .1361443   | .2035999  |  |
| (4#female) vs (1#male)   | .2527094     | .0173073  | .2187878   | .286631   |  |
| (5#male) vs (1#male)     | .3367733     | .0439099  | .2507114   | .4228352  |  |
| (5#female) vs (1#male)   | .4463801     | .0328339  | .3820268   | .5107333  |  |
| (2#male) vs (1#female)   | .0111518     | .0093316  | 0071379    | .0294415  |  |
| (2#female) vs (1#female) | .0342925     | .0032639  | .0278954   | .0406896  |  |

| (3#male) vs (1#female)   | -   | .0599359  | .0112873 | .0378132  | .0820587  |
|--------------------------|-----|-----------|----------|-----------|-----------|
| (3#female) vs (1#female) | - 1 | .1076582  | .0068839 | .0941661  | .1211504  |
| (4#male) vs (1#female)   | - 1 | . 1596037 | .0172049 | .1258827  | .1933246  |
| (4#female) vs (1#female) | - 1 | .242441   | .0161021 | .2108814  | .2740005  |
| (5#male) vs (1#female)   | - 1 | .3265048  | .041177  | . 2457994 | .4072102  |
| (5#female) vs (1#female) | - 1 | .4361116  | .0345021 | .3684887  | .5037345  |
| (2#female) vs (2#male)   | - 1 | .0231407  | .0115908 | .0004231  | .0458583  |
| (3#male) vs (2#male)     | - 1 | .0487841  | .0044858 | .0399922  | .0575761  |
| (3#female) vs (2#male)   | - 1 | .0965065  | .0138589 | .0693435  | .1236694  |
| (4#male) vs (2#male)     | - 1 | .1484519  | .017062  | .115011   | .1818928  |
| (4#female) vs (2#male)   | - 1 | .2312892  | .0188626 | .1943192  | . 2682592 |
| (5#male) vs (2#male)     | - 1 | .315353   | .0448691 | .2274111  | .4032949  |
| (5#female) vs (2#male)   | - 1 | .4249598  | .0339939 | .358333   | .4915867  |
| (3#male) vs (2#female)   | - 1 | .0256434  | .013238  | 0003027   | .0515895  |
| (3#female) vs (2#female) | - 1 | .0733657  | .0045497 | .0644484  | .0822831  |
| (4#male) vs (2#female)   | - 1 | .1253111  | .0184164 | .0892157  | .1614066  |
| (4#female) vs (2#female) | - 1 | .2081485  | .015823  | .177136   | .2391609  |
| (5#male) vs (2#female)   | - 1 | .2922123  | .0415145 | .2108454  | .3735792  |
| (5#female) vs (2#female) | - 1 | .4018191  | .0353013 | .3326299  | .4710083  |
| (3#female) vs (3#male)   |     | .0477223  | .0153717 | .0175943  | .0778504  |
| (4#male) vs (3#male)     | - 1 | .0996677  | .0137035 | .0728094  | .1265261  |
| (4#female) vs (3#male)   | - 1 | .182505   | .0202228 | .142869   | .222141   |
| (5#male) vs (3#male)     |     | .2665689  | .0424277 | .1834121  | .3497257  |
| (5#female) vs (3#male)   | -   | .3761757  | .0349486 | .3076778  | .4446736  |
| (4#male) vs (3#female)   | -   | .0519454  | .0196499 | .0134322  | .0904586  |
| (4#female) vs (3#female) | -   | .1347827  | .0123002 | .1106747  | .1588908  |
| (5#male) vs (3#female)   | - 1 | .2188466  | .0414735 | .1375599  | .3001332  |
| (5#female) vs (3#female) | - 1 | .3284534  | .0325423 | .2646715  | .3922352  |
| (4#female) vs (4#male)   | - 1 | .0828373  | .0229441 | .0378678  | .1278069  |
| (5#male) vs (4#male)     | - 1 | .1669011  | .029177  | .1097153  | .224087   |
| (5#female) vs (4#male)   | - 1 | .276508   | .0359297 | .2060871  | .3469288  |
| (5#male) vs (4#female)   |     | .0840638  | .0417247 | .0022849  | .1658428  |
| (5#female) vs (4#female) |     | .1936707  | .0205646 | .1533647  | .2339766  |
| (5#female) vs (5#male)   |     | .1096068  | .0482732 | .014993   | .2042206  |
|                          |     |           |          |           |           |

# 5 use Data File With margins

Now I'm going to use the data file with margins. It's worth taking a look at.

use marginsdemo.dta, clear

describe

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-plotting-> margins\profile.do .

(Created by command margins; also see char list)

Contains data from marginsdemo.dta

Observations: 45 Created by command margins;

also see char list

Variables: 16 29 Apr 2024 14:35

| Variable name                                                                                         | •                                                                      | Display<br>format |              | Variable label                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| namederiv _term _predict _at _atopt _margin _se_margin _statistic _pvalue _ci_lb _ci_ub _m1 _at1 _at2 | byte byte byte byte float float float float float float byte byte byte | format            | _term _atopt | Variable label  Derivatives w.r.t.  Margin term index predict() option index Covariates fixed values index at() option index Pr(outcome), predict() Standard error z-statistic P> z  95% Confidence interval, LB 95% Confidence interval, UB sex sex age |
| _at3<br>_pw                                                                                           | byte<br>byte                                                           | %2.0f<br>%14.0g   | _pw          | group                                                                                                                                                                                                                                                    |

Sorted by:

# 6 Make The Graph!

I'm going to want to graph the \_margin against values of the \_at2 variable. I also want to graph the confidence interval: \_ci\_lb and \_ci\_ub.

Because there is so much output, I only want to do this for specific values of the \_pw variable.

#### label list \_pw

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-plotting> margins\profile.do . label list \_pw
\_pw:

1 (1 1) vs (1 0) 2 (2 0) vs (1 0) 3 (2 1) vs (1 0) 4 (3 0) vs (1 0) 5 (3 1) vs (1 0) 6 (4 0) vs (1 0) 7 (4 1) vs (1 0) 8 (5 0) vs (1 0) 9 (5 1) vs (1 0) 10 (2 0) vs (1 1) 11 (2 1) vs (1 1) 12 (3 0) vs (1 1) 13 (3 1) vs (1 1) 14 (4 0) vs (1 1) 15 (4 1) vs (1 1) 16 (5 0) vs (1 1) 17 (5 1) vs (1 1) 18 (2 1) vs (2 0) 19 (3 0) vs (2 0) 20 (3 1) vs (2 0) 21 (4 0) vs (2 0) 22 (4 1) vs (2 0) 23 (5 0) vs (2 0) 24 (5 1) vs (2 0) 25 (3 0) vs (2 1) 26 (3 1) vs (2 1) 27 (4 0) vs (2 1) 28 (4 1) vs (2 1) 29 (5 0) vs (2 1) 30 (5 1) vs (2 1) 31 (3 1) vs (3 0) 32 (4 0) vs (3 0) 33 (4 1) vs (3 0) 34 (5 0) vs (3 0)

35 (5 1) vs (3 0)

```
36 (4 0) vs (3 1)
37 (4 1) vs (3 1)
38 (5 0) vs (3 1)
39 (5 1) vs (3 1)
40 (4 1) vs (4 0)
41 (5 0) vs (4 0)
42 (5 1) vs (4 0)
43 (5 0) vs (4 1)
44 (5 1) vs (4 1)
45 (5 1) vs (5 0)
```

#### Warning

Remember that pwcompare gives us pairwise comparisons, i.e the difference between the predicted probabilities for the two groups.

```
twoway (line _margin _at) /// line graph for margins
(rcap _ci_lb _ci_ub _at, legend(off)) /// range plot w capped spikes for CIs
if _pw == 1 | _pw == 18 | /// long complicated if statement
_pw == 31 | _pw == 40 | _pw == 45, /// broken into several lines
title("Difference in Predicted Probabilities Between Male and Female") ///
xtitle("age") ///
ytitle("predicted probability")
graph export mypwmarginsplot.png, width(1000) replace
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-plotting-> margins\profile.do .

file mypwmarginsplot.png saved as PNG format

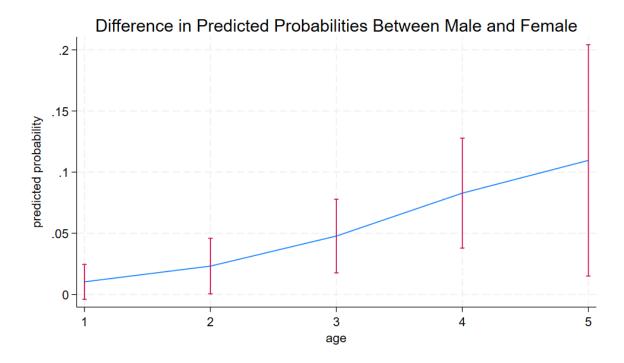



Figure 1: marginsplot of pairwise comparisons