Logistic Regression The Basics

Andy Grogan-Kaylor 2023-10-25

Table of contents

1	Logistic Regression	1
2	Get The Data	1
3	Describe The Data	2
4	The Equation	2
5	Estimate Logistic Regression (logit y x)	3
6	Odds Ratios (logit y x, or)	3
7	β Coefficients and Odds Ratios	4
8	Coefficients, Standard Errors, p values, and Confidence Intervals	5

1 Logistic Regression

Basic handout on logistic regression for a binary dependent variable.

2 Get The Data

We start by obtaining $simulated\ data$ from StataCorp.

```
clear all
graph close _all
use http://www.stata-press.com/data/r15/margex, clear
```

(Artificial data for margins)

3 Describe The Data

The variables are as follows:

describe

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-regressio > n-the-basics\profile.do .

Contains data from http://www.stata-press.com/data/r15/margex.dta

Observations: 3,000 Artificial data for margins

Variables: 11 27 Nov 2016 14:27

Variable name	Storage type	Display format	Value label	Variable label
y outcome sex group age distance ycn	float byte byte float float float float	%6.1f %2.0f %6.0f %2.0f %3.0f %6.2f %6.1f	sexlbl	
treatment agegroup arm	byte byte byte	%2.0f %8.0g %8.0g	agelab	

Sorted by: group

4 The Equation

$$\ln \left(\frac{p(outcome)}{1-p(outcome)}\right) = \beta_0 + \beta_1 x_1$$

Here p(outcome) is the probability of the outcome.

 $\frac{p(outcome)}{1-p(outcome)}$ is the odds of the outcome.

Hence, $\ln\left(\frac{p(outcome)}{1-p(outcome)}\right)$ is the log~odds.

Logistic regression returns a β coefficient for each independent variable x.

These β coefficients can then be exponentiated to obtain odds ratios:

$$OR = e^{\beta}$$

5 Estimate Logistic Regression (logit y x)

We then run a logistic regression model in which outcome is the dependent variable. sex, age and group are the independent variables.

```
logit outcome i.sex c.age i.group
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-regressio > $n-the-basics\profile.do$.

```
Iteration 0: Log likelihood = -1366.0718
Iteration 1: Log likelihood = -1111.4595
Iteration 2: Log likelihood = -1069.588
Iteration 3: Log likelihood = -1068
Iteration 4: Log likelihood = -1067.9941
Iteration 5: Log likelihood = -1067.9941
```

Number of obs = 3,000 LR chi2(4) = 596.16 Prob > chi2 = 0.0000 Pseudo R2 = 0.2182

Log	likelihood	=	-1067	.9941

outcome	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
sex						
female	.4991622	.1347463	3.70	0.000	.2350643	.76326
age	.0902429	.0064801	13.93	0.000	.0775421	.1029437
I						
group						
2	5855242	.1350192	-4.34	0.000	850157	3208915
3	-1.360208	.2914263	-4.67	0.000	-1.931393	7890228
I						
_cons	-5.553038	.3498204	-15.87	0.000	-6.238674	-4.867403

6 Odds Ratios (logit y x, or)

We re-run the model with exponentiated coefficients (e^{β} to obtain odds ratios.

```
logit outcome i.sex c.age i.group, or
```

Running C:\Users\agrogan\Desktop\GitHub\newstuff\categorical\logistic-regressio > n-the-basics\profile.do .

Iteration 0: Log likelihood = -1366.0718
Iteration 1: Log likelihood = -1111.4595
Iteration 2: Log likelihood = -1069.588
Iteration 3: Log likelihood = -1068
Iteration 4: Log likelihood = -1067.9941
Iteration 5: Log likelihood = -1067.9941

Logistic regression Number of obs = 3,000LR chi2(4) = 596.16Prob > chi2 = 0.0000

Log likelihood = -1067.9941 Pseudo R2 = 0.2182

Odds ratio	Std. err.	z	P> z	[95% conf.	interval]
1.64734	.221973	3.70	0.000	1.26499	2.145258
1.09444	.0070921	13.93	0.000	1.080628	1.108429
.5568139	.0751806	-4.34	0.000	.4273478	.725502
.2566074	.0747822	-4.67	0.000	.1449462	.4542885
.0038757	.0013558	-15.87	0.000	.0019524	.0076933
	1.64734 1.09444 .5568139 .2566074	1.64734 .221973 1.09444 .0070921 .5568139 .0751806 .2566074 .0747822	1.64734 .221973 3.70 1.09444 .0070921 13.93 .5568139 .0751806 -4.34 .2566074 .0747822 -4.67	1.64734 .221973 3.70 0.000 1.09444 .0070921 13.93 0.000 .5568139 .0751806 -4.34 0.000 .2566074 .0747822 -4.67 0.000	1.64734 .221973 3.70 0.000 1.26499 1.09444 .0070921 13.93 0.000 1.080628 .5568139 .0751806 -4.34 0.000 .4273478 .2566074 .0747822 -4.67 0.000 .1449462

Note: _cons estimates baseline odds.

7 β Coefficients and Odds Ratios

Substantively	β	OR
x is associated with	> 0.0	> 1.0
an increase in y		
no association	0.0	1.0
x is associated with a	< 0.0	< 1.0
descrease in y		

8 Coefficients, Standard Errors, p values, and Confidence Intervals

- $\begin{array}{l} \bullet \ \ {\rm z\ statistic:}\ z=\frac{\beta}{se}. \\ \bullet \ \ {\rm p\ value\ if}\ z_{\rm observed}>1.96\ {\rm then}\ p<.05. \\ \bullet \ \ {\rm CI}=\beta\pm1.96*se \end{array}$

Hence for the coefficient for sex, the confidence interval is:

$$.4991622 \pm (1.959964 * .1347463) = (.2350643, .7632601)$$

Confidence intervals for odds ratios (e^{β}) are obtained by exponentiating the confidence interval for the β coefficients. As a result of this non-linear transformation, confidence intervals for odds ratios are not symmetric.