Multilevel Models For Categorical Data

Andy Grogan-Kaylor

12 Feb 2021 17:22:03

Motivating Example

High School and Beyond Data

- . use hsb.dta, clear
- . describe

Contains data from hsb.dta obs: 7,185

obs: 7,1 vars:

27 Oct 2020 21:35

variable name	storage type	display format	value label	variable label	
female ses mathach size sector schoolid mathgroup	byte float float int byte float float	%8.0g %9.0g %9.0g %8.0g %8.0g %9.0g		female socioeconomic status math achievement school size Catholic vs. Public School ID math group (Hi / Lo)	

Sorted by:

. summarize

Variable	Obs	Mean	Std. Dev.	Min	Max
female	7,185	.5281837	.4992398	0	1
ses	7,185	.0001434	.7793552	-3.758	2.692
mathach	7,185	12.74785	6.878246	-2.832	24.993
size	7,185	1056.862	604.1725	100	2713
sector	7,185	.4931106	.4999873	0	1
schoolid	7,185	5277.898	2499.578	1224	9586
mathgroup	7,185	.5000696	.5000348	0	1

Histogram of SES

```
. histogram ses, scheme(michigan)
(bin=38, start=-3.7579999, width=.16973684)
```

Generate Mean SES Per School

. bysort schoolid: egen meanses = mean(ses) // generate mean ses per school

[.] graph export myhistogram.png, width(1000) replace
(file /Users/agrogan/Desktop/newstuff/categorical/multilevel/myhistogram.png written
> in PNG format)

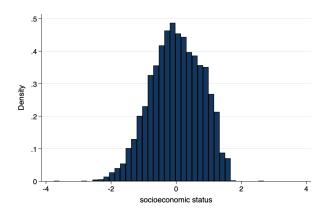


Figure 1: Histogram of SES

. summarize ses meanses

Variable	0bs	Mean	Std. Dev.	Min	Max
ses	7,185	.0001434	.7793552	-3.758	2.692
meanses	7,185	.0001434	.4135432	-1.193946	.8249825

- . twoway scatter ses meanses, msize(vsmall) ///
- > title("SES and Mean SES Are Correlated") sub("But Not Equivalent") ///
- > scheme(michigan)
- . graph export myscatter.png, width(1000) replace
 (file /Users/agrogan/Desktop/newstuff/categorical/multilevel/myscatter.png written i
 > n PNG format)



Figure 2: Scatterplot of SES and Mean SES by School

A Multilevel Model

. melogit mathgroup female ses meanses size sector $\mid\mid$ schoolid:

Fitting fixed-effects model:

Iteration 0: log likelihood = -4510.2199
Iteration 1: log likelihood = -4507.2385
Iteration 2: log likelihood = -4507.2365
Iteration 3: log likelihood = -4507.2365

Refining starting values:

Grid node 0: log likelihood = -4500.0458 Fitting full model: log likelihood = -4500.0458Iteration 0: (not concave) log likelihood = -4464.0398Iteration 1: \log likelihood = -4456.1438 Iteration 2: $\log likelihood = -4455.9091$ Iteration 3: log likelihood = -4455.9081Iteration 4: $\log = -4455.9081$ Iteration 5: Mixed-effects logistic regression Number of obs 7,185 Group variable: Number of groups 160 Obs per group: 14 44.9 avg = 67 Integration method: mvaghermite Integration pts. Wald chi2(5) 483.33 Log likelihood = -4455.9081Prob > chi2 0.0000 [95% Conf. Interval] mathgroup Coef. Std. Err. P>|z| z -.32004 .0571132 -5.60 0.000 -.4319798 -.2081003 female .6061583 .0398911 0.000 .5279733 .6843434 15.20 ses meanses .8865231 .1199975 7.39 0.000 .6513323 1.121714 .0001412 .0000777 1.82 0.069 -.0000111 .0002936 size .4156577 .1017318 0.000 .2162671 .6150483 4.09 sector _cons -.1954753 .1244737 -1.57 0.116 -.4394392 .0484886 schoolid .1822203 .0351234 .1248895 .265869 var(_cons)

Prob >= chibar2 = 0.0000

Ask For Odds Ratios

LR test vs. logistic model: chibar2(01) = 102.66

. melogit, or Mixed-effects logistic regression Number of obs 7,185 Group variable: schoolid Number of groups 160 Obs per group: min =14 avg = 44.9 max = 67 7 Integration method: mvaghermite Integration pts. Wald chi2(5) 483.33 Log likelihood = -4455.9081Prob > chi2 0.0000 Odds Ratio Std. Err. [95% Conf. Interval] mathgroup z P>|z| .72612 .041471 -5.60 0.000 .6492225 .8121256 female 0.000 ses 1.833375 .0731353 15.20 1.695493 1.98247 meanses 2.426678 .2911952 7.39 0.000 1.918095 3.070111 0.069 size 1.000141 .0000777 1.82 .9999889 1,000294 1.515367 .154161 4.09 0.000 1.241434 1.849746 sector .8224437 .1023726 -1.57 0.116 .6443977 1.049683 cons schoolid .0351234 .1248895 var(cons) .1822203 .265869

Note: Estimates are transformed only in the first equation.

Note: _cons estimates baseline odds (conditional on zero random effects).

LR test vs. logistic model: chibar2(01) = 102.66 Prob >= chibar2 = 0.0000

Intra Class Correlation Coefficient (ICC)

. estat icc

Level	ICC	Std. Err.	[95% Conf.	Interval]
schoolid	.0524815	.009585	.0365734	.0747718

Visualizing The Idea Of A Random Intercept

```
. clear all
. twoway (function y = logistic(x), range(-5 5)) /// first school; random intercept
> 0
> (function y = logistic(x + 1), range(-5 5)) /// second school; random intercept 1
> (function y = logistic(x - 1), range(-5 5)), /// third school; random intercept -1
> title("Three Hypothetical Schools") ///
> sub("With Different Random Intercepts") ///
> legend(order(1 "random intercept 0" 2 "random intercept +1" 3 "random intercept -1
> ")) ///
> scheme(michigan)
. graph export myMLM.png, width(1000) replace
(file /Users/agrogan/Desktop/newstuff/categorical/multilevel/myMLM.png written in PN
> G format)
```

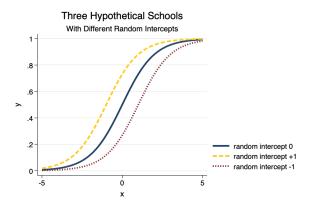


Figure 3: Simulated MLM of School Data

Multiple Uses For Multilevel Modeling

Multilevel modeling is useful in a number of situations with clustering.

Model	Clustering or Nesting
Nested or clustered cross-sectional data	People inside social units such as families, classrooms, schools or neighborhoods, inside states, countries, etc.
Longitudinal data	Measurement occasions inside people (multiple time points; different people have very different time points)
Meta-Analysis	People inside multiple studies concerning a particular outcome

Model	Clustering or Nesting
Meta-Analysis of Multiple Outcomes	People inside multiple studies concerning different outcomes
Dyadic analysis (e.g. couples; parent and child in family) Combinations of these approaches	People inside dyads

Mathematics is the art of giving the same name to different things. —Henri Poincaré

Developing Some Notation

Our notation for logistic regression model is:

$$\ln\left(\frac{p(\text{outcome})}{1 - p(\text{outcome})}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$$

which after exponentiating both sides, and some rearrangement, can be written:

$$p(\text{outcome}) = \frac{e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots}}{1 + e^{\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots}} =$$

$$F(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...)$$

where $F(z) = \frac{e^z}{1+e^z}$, which is the logistic distribution.

So in adapting this notation for the multilevel context, we are ultimately going to write the notation for the multilevel logistic regression model as:

 $p(\text{outcome}|\text{unique intercept for each unit}) = F(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + u_{0j})$

Stata Commands

Multilevel models have complicated likelihoods. As we move toward the middle to end of this table, models may have difficulty converging.

Single Level Command	Multilevel Command
regress y x	mixed y x id:
logit y x	melogit y x id:
ologit y x	meologit $y \times id:$
mlogit y x	gsem
poisson y x	mepoisson y x id:
nbreg y x	menbreg y x id: