7 Oct 2020
Cutpoints in ordered logistic regression are not terrifically substantively informative, but they do contain statistical information.
This handout draws heavily on the Stata documentation for
ologit.
. clear all // clear the workspace
. use http://www.stata-press.com/data/r15/fullauto // use auto data set from Stata documenta > tion (Automobile Models)
. codebook rep77 foreign // codebook
────────────────────────────────────────────────────────────────────────────────────────────
rep77 Repair Record 1977
────────────────────────────────────────────────────────────────────────────────────────────
type: numeric (int)
label: repair
range: [1,5] units: 1
unique values: 5 missing .: 8/74
tabulation: Freq. Numeric Label
3 1 Poor
11 2 Fair
27 3 Average
20 4 Good
5 5 Excellent
8 .
────────────────────────────────────────────────────────────────────────────────────────────
foreign Foreign
────────────────────────────────────────────────────────────────────────────────────────────
type: numeric (int)
label: foreign
range: [0,1] units: 1
unique values: 2 missing .: 0/74
tabulation: Freq. Numeric Label
52 0 Domestic
22 1 Foreign
. ologit rep77 foreign // estimate ordered logistic regression
Iteration 0: log likelihood = -89.895098
Iteration 1: log likelihood = -85.951765
Iteration 2: log likelihood = -85.908227
Iteration 3: log likelihood = -85.908161
Iteration 4: log likelihood = -85.908161
Ordered logistic regression Number of obs = 66
LR chi2(1) = 7.97
Prob > chi2 = 0.0047
Log likelihood = -85.908161 Pseudo R2 = 0.0444
─────────────┬────────────────────────────────────────────────────────────────
rep77 │ Coef. Std. Err. z P>|z| [95% Conf. Interval]
─────────────┼────────────────────────────────────────────────────────────────
foreign │ 1.455878 .5308951 2.74 0.006 .4153425 2.496413
─────────────┼────────────────────────────────────────────────────────────────
/cut1 │ -2.765562 .5988208 -3.939229 -1.591895
/cut2 │ -.9963603 .3217706 -1.627019 -.3657016
/cut3 │ .9426153 .3136398 .3278925 1.557338
/cut4 │ 3.123351 .5423257 2.060412 4.18629
─────────────┴────────────────────────────────────────────────────────────────
. predict yhat* // predicted probabilities for different levels of dv (option pr assumed; predicted probabilities)
. tabstat yhat1 yhat2 yhat3 yhat4 yhat5, by(foreign) // table of predicted probabilities Summary statistics: mean by categories of: foreign (Foreign) foreign │ yhat1 yhat2 yhat3 yhat4 yhat5 ─────────┼────────────────────────────────────────────────── Domestic │ .0592137 .2104439 .44997 .2382181 .0421543 Foreign │ .0144652 .0648099 .295154 .4668096 .1587614 ─────────┼────────────────────────────────────────────────── Total │ .0459101 .1671473 .4039436 .3061777 .0768213 ─────────┴──────────────────────────────────────────────────
We can use the cutpoints as another way of calculating these probabilities, with the logistic formula \(1/(1 + e^{u_j})\)
For example, the Stata documentation notes that
“For a foreign car, the probability of a poor record is the probability that \(1.46 + u_j <= -2.77\), or equivalently, \(u_j <= -4.23\). Making this calculation requires familiarity with the logistic distribution: the probability is \(1/(1+e^{4.23}) = 0.014\). On the other hand, for domestic cars, the probability of a poor record is the probability \(u_j <= -2.77\), which is 0.059 [\(1/(1 + e^{2.77})\)].”