Cutpoints in Ordered Logistic Regression

Andy Grogan-Kaylor

7 Oct 2020

Background

Cutpoints in ordered logistic regression are not terrifically substantively informative, but they do contain statistical information.

This handout draws heavily on the Stata documentation for ologit.

Ordered Logistic Regression

Setup

. clear all // clear the workspace

Get The Data

```
. use http://www.stata-press.com/data/r15/fullauto // use auto data set from Stata documenta
> tion
(Automobile Models)
```

Codebook

. codebook rep77 foreign // codebook

rep77						Repair	Record	1977
type: label:	numeric repair	(int)						
range:	[1.5]			units:	1			
unique values:				missing .:	8/74			
tabulation:	Freq.	Numeric	Label					
	3	1	Poor					
	11	2	Fair					
	27	3	Average					
	20	4	Good					
	5	5	Exceller	ıt				
	8							
foreign								reign

type: numeric (int)
label: foreign

range: [0,1] units: 1 unique values: 2 missing .: 0/74

tabulation: Freq. Numeric Label
52 0 Domestic
22 1 Foreign

Run The Model

. ologit rep77 foreign // estimate ordered logistic regression

Iteration 0: log likelihood = -89.895098
Iteration 1: log likelihood = -85.951765
Iteration 2: log likelihood = -85.908227
Iteration 3: log likelihood = -85.908161
Iteration 4: log likelihood = -85.908161

rep77	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
foreign	1.455878	.5308951	2.74	0.006	.4153425	2.496413
/cut1 /cut2 /cut3 /cut4	-2.765562 9963603 .9426153 3.123351	.5988208 .3217706 .3136398 .5423257			-3.939229 -1.627019 .3278925 2.060412	-1.591895 3657016 1.557338 4.18629

. predict yhat* // predicted probabilities for different levels of dv (option pr assumed; predicted probabilities)

. tabstat yhat1 yhat2 yhat3 yhat4 yhat5, by(foreign) // table of predicted probabilities

Summary statistics: mean

by categories of: foreign (Foreign)

foreign	yhat1	yhat2	yhat3	yhat4	yhat5
Domestic Foreign	.0592137 .0144652	.2104439	.44997 .295154	.2382181 .4668096	.0421543 .1587614
Total	.0459101	.1671473	.4039436	.3061777	.0768213

Calculations

We can use the cutpoints as another way of calculating these probabilities, with the logistic formula $1/(1+e^{u_j})$ For example, the Stata documentation notes that

"For a foreign car, the probability of a poor record is the probability that $1.46 + u_j <= -2.77$, or equivalently, $u_j <= -4.23$. Making this calculation requires familiarity with the logistic distribution: the probability is $1/(1 + e^{4.23}) = 0.014$. On the other hand, for domestic cars, the probability of a poor record is the probability $u_j <= -2.77$, which is $0.059 \ [1/(1 + e^{2.77})]$."