Visualizing Multilevel Models

Author
Published

December 17, 2024

1 Introduction

An evolving set of notes on visualizing results from multilevel models.

The examples below use the simulated_multilevel_data.dta file from my draft text book on Multilevel Thinking. Here is a direct link to download the data.

This document relies on the extraordinary Statamarkdown library (Hemken 2023).

2 Organizing Questions

Try to think about some of the advantages and disadvantages of different approaches to visualizing multilevel models. In multilevel models, we don’t want to just control for variation, but to start to explore the variation. Put concretely:

  • Some approaches use dots. Some approaches use lines. Some approaches use dots and lines.
  • Some approaches use the raw unadjusted data. Other approaches use adjusted or model predicted data.
  • Some approaches attempt to show the Level 2 specific regression lines; some approaches only show an average regression line.
  • What approaches might work well with large numbers of Level 2 units? What approaches might work well with smaller numbers of Level 2 units?

What approach(es) do you prefer?

3 Setup

I am not terrifically fond of the default s2color graph scheme in earlier versions of Stata. Here I make use of the michigan graph scheme available at: https://agrogan1.github.io/Stata/michigan-graph-scheme/.

set scheme michigan

Stata’s stcolor scheme–available in newer versions of Stata–would also be an option as would be Asjad Naqvi’s incredible schemepack: https://github.com/asjadnaqvi/stata-schemepack.

Throughout the tutorial, I make frequent use of the mcolor(%30) option to add some visual interest to scatterplots by adding transparency to the markers.

4 Get Data

use "simulated_multilevel_data.dta", clear

5 Scatterplots (twoway scatter y x)

twoway scatter outcome warmth, mcolor(%30)
    
graph export myscatter.png, width(1500) replace
Figure 1: Scatterplot

6 Simple Linear Fit (twoway lfit y x)

twoway lfit outcome warmth
    
graph export mylinear.png, width(1500) replace
Figure 2: Linear Fit

7 Linear Fit With Confidence Interval (twoway lfitci y x)

twoway lfitci outcome warmth
    
graph export mylfitci.png, width(1500) replace
Figure 3: Linear Fit With Confidence Interval

8 Combine Scatterplot and Linear Fit (twoway (scatter y x) (lfit y x))

twoway (scatter outcome warmth, mcolor(%30)) (lfit outcome warmth)
    
graph export myscatterlinear.png, width(1500) replace
Figure 4: Scatterplot and Linear Fit

9 Spaghetti Plots (spagplot y x, id(group))

spagplot outcome warmth, id(country)
    
graph export myspaghetti.png, width(1500) replace
Figure 5: Spaghetti Plot

10 Small Multiples (twoway y x, by(group))

Small Multiples, showing a separate graph for each group in the data, are an increasingly popular data visualization technique. Below, I build a small multiples graph using the by option in Stata. I use the aspect option to adjust the aspect ratio of the graph for better visual presentation.

twoway (scatter outcome warmth, mcolor(%30)) ///
(lfit outcome warmth), ///
by(country) aspect(1)
    
graph export mysmallmultiples.png, width(1500) replace
Figure 6: Small Multiples

11 Small Multiples With A Random Sample

At times, we may have too many Level 2 units to effectively display them on a spaghetti plot, or using small multiples. If this is the case, we may need to randomly sample Level 2 units. This can be difficult to accomplish as our standard sample command operates on each row, or on Level 1 units.

We can accomplish random sampling at Level 2, with a little bit of code.


set seed 3846 // random seed for reproducibility

gen randomid = runiform() // generate a random id variable
        
* by country (i.e. by Level 2 unit) replace the randomid 
* with the first randomid for that country (Level 2 unit)
* so that every person in that country has the same random id

bysort country: replace randomid = randomid[1] 
    
summarize randomid // descriptive statistics for random id

twoway (scatter outcome warmth, mcolor(%30)) /// scatterplot
(lfit outcome warmth) /// linear fit
if randomid < .5, /// only use a subset of randomids
by(country) aspect(1) // by country
    
quietly: graph export mysmallmultiples2.png, width(1500) replace
Running C:\Users\agrogan\Desktop\GitHub\multilevel\visualizing-MLM\profile.do .

> ..




(2,970 real changes made)

    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
    randomid |      3,000    .6174022    .2374704   .0733026   .9657055
Figure 7: Small Multiples With A Random Sample Of Countries

12 Multivariate (Predicted) Relationships

A sometimes unacknowledged point is that graphs–unless we take steps to correct this–reflect unadjusted, or bivariate associations. We may sometimes wish to develop a graphs that reflect the adjusted or predicted estimates from our models.

12.1 Using Predicted Values (predict)

predict generates a predicted value for every observation in the data.

In multilevel models, prediction is a complex question. Prediction may–or may not–incorporate the information from the random effects. The procedures below outline graphs that incorporate predictions using the random effects, by using the predict ..., fitted syntax.

12.1.1 Estimate The Model


mixed outcome warmth physical_punishment i.intervention || country: // estimate MLM
Running C:\Users\agrogan\Desktop\GitHub\multilevel\visualizing-MLM\profile.do .

> ..



Performing EM optimization ...

Performing gradient-based optimization: 
Iteration 0:  Log likelihood = -9628.1621  
Iteration 1:  Log likelihood = -9628.1621  

Computing standard errors ...

Mixed-effects ML regression                          Number of obs    =  3,000
Group variable: country                              Number of groups =     30
                                                     Obs per group:
                                                                  min =    100
                                                                  avg =  100.0
                                                                  max =    100
                                                     Wald chi2(3)     = 370.90
Log likelihood = -9628.1621                          Prob > chi2      = 0.0000

------------------------------------------------------------------------------
     outcome | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      warmth |   .8330937   .0574809    14.49   0.000     .7204332    .9457543
physical_p~t |  -.9937819   .0798493   -12.45   0.000    -1.150284   -.8372801
1.interven~n |   .6406043   .2175496     2.94   0.003      .214215    1.066994
       _cons |   51.65238   .4664841   110.73   0.000     50.73809    52.56668
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
-----------------------------+------------------------------------------------
country: Identity            |
                  var(_cons) |   3.371762   .9613269      1.928279    5.895816
-----------------------------+------------------------------------------------
               var(Residual) |    35.0675    .910002      33.32853    36.89721
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 204.14        Prob >= chibar2 = 0.0000

12.1.2 Generate Predicted Values

predict outcome_hat, fitted // predict yhat (`fitted` uses fixed AND random effects)

12.1.3 Graph With twoway Syntax

twoway (scatter outcome_hat warmth, mcolor(%30)) (lfit outcome_hat warmth)

graph export mypredictedvalues.png, width(1500) replace
    
twoway (lfit outcome_hat warmth)
    
graph export mypredictedvalues2.png, width(1500) replace
Figure 8: Predicted Values From predict
Figure 9: Predicted Values From predict With Only Linear Fit

12.1.4 Spaghetti Plot With Predicted Values

spagplot outcome_hat warmth, id(country)
    
graph export myspaghetti2.png, width(1500) replace
Figure 10: Spaghetti Plot With Predicted Values

12.2 margins and marginsplot

In contrast to predict, which generates a predicted value for every observation in the data, margins generates predicted values at specific values of certain variables.

12.2.1 Estimate The Model


mixed outcome warmth physical_punishment i.intervention || country: // estimate MLM
Running C:\Users\agrogan\Desktop\GitHub\multilevel\visualizing-MLM\profile.do .

> ..



Performing EM optimization ...

Performing gradient-based optimization: 
Iteration 0:  Log likelihood = -9628.1621  
Iteration 1:  Log likelihood = -9628.1621  

Computing standard errors ...

Mixed-effects ML regression                          Number of obs    =  3,000
Group variable: country                              Number of groups =     30
                                                     Obs per group:
                                                                  min =    100
                                                                  avg =  100.0
                                                                  max =    100
                                                     Wald chi2(3)     = 370.90
Log likelihood = -9628.1621                          Prob > chi2      = 0.0000

------------------------------------------------------------------------------
     outcome | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
      warmth |   .8330937   .0574809    14.49   0.000     .7204332    .9457543
physical_p~t |  -.9937819   .0798493   -12.45   0.000    -1.150284   -.8372801
1.interven~n |   .6406043   .2175496     2.94   0.003      .214215    1.066994
       _cons |   51.65238   .4664841   110.73   0.000     50.73809    52.56668
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
-----------------------------+------------------------------------------------
country: Identity            |
                  var(_cons) |   3.371762   .9613269      1.928279    5.895816
-----------------------------+------------------------------------------------
               var(Residual) |    35.0675    .910002      33.32853    36.89721
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 204.14        Prob >= chibar2 = 0.0000

12.2.2 Generate Predicted Values At Specified Values With margins


margins intervention, at(warmth = (1 2 3 4 5 6 7)) // predictive *margins*
Running C:\Users\agrogan\Desktop\GitHub\multilevel\visualizing-MLM\profile.do .

> ..



Predictive margins                                       Number of obs = 3,000

Expression: Linear prediction, fixed portion, predict()
1._at: warmth = 1
2._at: warmth = 2
3._at: warmth = 3
4._at: warmth = 4
5._at: warmth = 5
6._at: warmth = 6
7._at: warmth = 7

------------------------------------------------------------------------------
             |            Delta-method
             |     Margin   std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
         _at#|
intervention |
        1 0  |   50.02222   .3966755   126.10   0.000     49.24475    50.79969
        1 1  |   50.66283   .3955286   128.09   0.000     49.88761    51.43805
        2 0  |   50.85532   .3788571   134.23   0.000     50.11277    51.59786
        2 1  |   51.49592   .3789096   135.91   0.000     50.75327    52.23857
        3 0  |   51.68841   .3692182   139.99   0.000     50.96476    52.41207
        3 1  |   52.32902    .370554   141.22   0.000     51.60274    53.05529
        4 0  |   52.52151   .3684014   142.57   0.000     51.79945    53.24356
        4 1  |   53.16211   .3710204   143.29   0.000     52.43492     53.8893
        5 0  |    53.3546    .376464   141.73   0.000     52.61674    54.09246
        5 1  |    53.9952   .3802764   141.99   0.000     53.24988    54.74053
        6 0  |   54.18769   .3928599   137.93   0.000      53.4177    54.95768
        6 1  |    54.8283   .3977088   137.86   0.000      54.0488    55.60779
        7 0  |   55.02079   .4166062   132.07   0.000     54.20425    55.83732
        7 1  |   55.66139   .4223062   131.80   0.000     54.83369     56.4891
------------------------------------------------------------------------------

12.2.3 Graph With marginsplot

marginsplot // plot of predicted values
    
graph export mymarginsplot.png, width(1500) replace
Figure 11: Predicted Values From margins and marginsplot

13 Scatterplot With Linear Fit and Marginal Density Plots (twoway ...)

As another possibility, we may wish to show more of the variation, by showing the variation in the independent variable and the dependent variable along with a scatterplot and linear fit. This is a complex graph and requires a little bit of manual programming in Stata.

You could also investigate the user written program binscatterhist (ssc install binscatterhist) which produces a similar looking graph, and automates much of this work.

13.1 Manually Generate The Densities To Plot Them Below (kdensity ...)

We generate the density for warmth at only a few points (n(8)) since this variable has relatively few categories.


kdensity warmth, generate(warmth_x warmth_d) n(8) // manually generate outcome densities

kdensity outcome, generate(outcome_y outcome_d) // manually generate outcome densities
Running C:\Users\agrogan\Desktop\GitHub\multilevel\visualizing-MLM\profile.do .

> ..

13.2 Rescale The Densities So They Plot Well

You may have to experiment with the scaling and moving factors.


replace warmth_d = 100 * warmth_d // rescale the density so it plots well

replace outcome_d = 5 * outcome_d - .5 // rescale AND MOVE the density so it plots well

label variable outcome_y "density: beneficial outcome" // relabel y variable
Running C:\Users\agrogan\Desktop\GitHub\multilevel\visualizing-MLM\profile.do .

> ..


(8 real changes made)

(50 real changes made)

13.3 Make The Graph (twoway ...)

You may have to experiment with whether scatterplots or line plots work best for displaying the x and y densities.

twoway (scatter outcome warmth, mcolor(%10)) /// scatterplot w some transparency
(lfit outcome warmth) /// linear fit
(line warmth_d warmth_x) /// line plot of x density 
(line outcome_y outcome_d), /// line plot of y density (note flipped order)
title("Outcome by Warmth") /// title
ytitle("beneficial outcome") /// manual ytitle
xtitle("parental warmth") /// manual xtitle
legend(position(6) rows(2) ) /// legend at bottom; 2 rows
xlabel(0 1 2 3 4 5 6 7) /// manual x labels
name(mynewscatter, replace)

graph export mynewscatter.png, width(1500) replace

Scatterplot and Linear Fit With Marginal Density Plots

Scatterplot and Linear Fit With Marginal Density Plots

14 References

References

Hemken, Doug. 2023. Statamarkdown: ’Stata’ Markdown. https://CRAN.R-project.org/package=Statamarkdown.