2  Two Level Cross Sectional; And Three Level Longitudinal Models

2.1 Cross Sectional Model

2.1.1 Get Data


use "simulated_multilevel_data.dta", clear

2.1.2 The Equation

\[\text{outcome}_{ij} = \beta_0 + \beta_1 \text{parental warmth} + \beta_2 \text{physical punishment} + \beta_3 \text{time} + \]

\[\beta_4 \text{identity}_2 + \beta_5 \text{intervention} + \beta_6 HDI +\]

\[u_{0j} + u_{1j} \times \text{parental warmth} + e_{ij} \]

2.1.3 Descriptive Statistics


summarize // descriptive statistics
    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
     country |      3,000        15.5    8.656884          1         30
         HDI |      3,000    64.76667    17.24562         33         87
      family |      3,000        50.5    28.87088          1        100
          id |          0
    identity |      3,000    .4976667    .5000779          0          1
-------------+---------------------------------------------------------
intervention |      3,000    .4843333    .4998378          0          1
physical_p~t |      3,000    2.478667    1.360942          0          5
      warmth |      3,000    3.521667    1.888399          0          7
     outcome |      3,000    52.43327    6.530996   29.60798   74.83553

2.1.4 Spaghetti Plot

spagplot outcome warmth, id(country) scheme(stcolor)

graph export spagplot1.png, width(1000) replace

Spaghetti Plot of Outcome by Warmth by Country

Spaghetti Plot of Outcome by Warmth by Country

2.1.5 Unconditional Model

2.1.5.1 Model


mixed outcome || country: // unconditional model
Performing EM optimization ...

Performing gradient-based optimization: 
Iteration 0:  Log likelihood = -9802.8371  
Iteration 1:  Log likelihood = -9802.8371  

Computing standard errors ...

Mixed-effects ML regression                           Number of obs    = 3,000
Group variable: country                               Number of groups =    30
                                                      Obs per group:
                                                                   min =   100
                                                                   avg = 100.0
                                                                   max =   100
                                                      Wald chi2(0)     =     .
Log likelihood = -9802.8371                           Prob > chi2      =     .

------------------------------------------------------------------------------
     outcome | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
-------------+----------------------------------------------------------------
       _cons |   52.43327   .3451217   151.93   0.000     51.75685     53.1097
------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
-----------------------------+------------------------------------------------
country: Identity            |
                  var(_cons) |   3.178658   .9226737      1.799552    5.614658
-----------------------------+------------------------------------------------
               var(Residual) |   39.46106   1.024013      37.50421       41.52
------------------------------------------------------------------------------
LR test vs. linear model: chibar2(01) = 166.31        Prob >= chibar2 = 0.0000

2.1.5.2 ICC


estat icc
Intraclass correlation

------------------------------------------------------------------------------
                       Level |        ICC   Std. err.     [95% conf. interval]
-----------------------------+------------------------------------------------
                     country |   .0745469   .0201254      .0434963    .1248696
------------------------------------------------------------------------------

2.1.6 Conditional Model


mixed outcome warmth physical_punishment identity i.intervention HDI || country: warmth // multilevel model

est store crosssectional // store estimates
Performing EM optimization ...

Performing gradient-based optimization: 
Iteration 0:  Log likelihood = -9626.6279  
Iteration 1:  Log likelihood =  -9626.607  
Iteration 2:  Log likelihood =  -9626.607  

Computing standard errors ...

Mixed-effects ML regression                          Number of obs    =  3,000
Group variable: country                              Number of groups =     30
                                                     Obs per group:
                                                                  min =    100
                                                                  avg =  100.0
                                                                  max =    100
                                                     Wald chi2(5)     = 334.14
Log likelihood =  -9626.607                          Prob > chi2      = 0.0000

-------------------------------------------------------------------------------------
            outcome | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------------+----------------------------------------------------------------
             warmth |   .8345368   .0637213    13.10   0.000     .7096453    .9594282
physical_punishment |  -.9916657   .0797906   -12.43   0.000    -1.148052   -.8352791
           identity |  -.3004767   .2170295    -1.38   0.166    -.7258466    .1248933
     1.intervention |   .6396427   .2174519     2.94   0.003     .2134448    1.065841
                HDI |   -.003228   .0199257    -0.16   0.871    -.0422817    .0358256
              _cons |   51.99991   1.371257    37.92   0.000      49.3123    54.68753
-------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
-----------------------------+------------------------------------------------
country: Independent         |
                 var(warmth) |   .0227504   .0257784      .0024689    .2096436
                  var(_cons) |   2.963975   .9737647      1.556777    5.643163
-----------------------------+------------------------------------------------
               var(Residual) |   34.97499   .9097109      33.23668    36.80422
------------------------------------------------------------------------------
LR test vs. linear model: chi2(2) = 205.74                Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

2.2 Longitudinal Model

2.2.1 Get Data


use "simulated_multilevel_longitudinal_data.dta", clear

2.2.2 The Equation

\[\text{outcome}_{ij} = \beta_0 + \beta_1 \text{parental warmth} + \beta_2 \text{physical punishment} + \beta_3 \text{time} + \]

\[\beta_4 \text{identity}_2 + \beta_5 \text{intervention} + \beta_5 HDI +\]

\[u_{0j} + u_{1j} \times \text{parental warmth} + \]

\[v_{0i} + v_{1i} \times t + e_{ij} \]

2.2.3 Descriptive Statistics


summarize // descriptive statistics
    Variable |        Obs        Mean    Std. dev.       Min        Max
-------------+---------------------------------------------------------
     country |      9,000        15.5    8.655922          1         30
         HDI |      9,000    64.76667     17.2437         33         87
      family |      9,000        50.5    28.86767          1        100
          id |          0
    identity |      9,000    .4976667    .5000223          0          1
-------------+---------------------------------------------------------
intervention |      9,000    .4843333    .4997823          0          1
           t |      9,000           2    .8165419          1          3
physical_p~t |      9,000    2.485333    1.373639          0          5
      warmth |      9,000    3.514222      1.8839          0          7
     outcome |      9,000    53.37768    6.572285   29.60798   79.02199

2.2.4 Alternate Plot

encode id, generate(idNUMERIC) // numeric version of id
    
* spagplot outcome t if idNUMERIC <= 10, id(idNUMERIC) scheme(stcolor)
    
twoway (lfit outcome t) (scatter outcome t) if idNUMERIC <= 10, by(idNUMERIC) scheme(stcolor)

graph export spagplot2.png, width(1000) replace

Alternate Plot of Outcome by Time by Individual; First 10 Observations

Alternate Plot of Outcome by Time by Individual; First 10 Observations

2.2.5 Unconditional Model

2.2.5.1 Model

mixed outcome || country: || id: // unconditional model

2.2.5.2 ICC


estat icc
Intraclass correlation

------------------------------------------------------------------------------
                       Level |        ICC   Std. err.     [95% conf. interval]
-----------------------------+------------------------------------------------
                     country |   .0748336   .0190847      .0450028    .1219141
                  id|country |   .3462837   .0171461      .3134867    .3806097
------------------------------------------------------------------------------

2.2.6 Conditional Model


mixed outcome t warmth physical_punishment i.identity i.intervention HDI || country: warmth || id: t // multilevel model

est store longitudinal // store estimates
Performing EM optimization ...

Performing gradient-based optimization: 
Iteration 0:  Log likelihood =  -28523.49  
Iteration 1:  Log likelihood = -28499.987  
Iteration 2:  Log likelihood = -28499.739  
Iteration 3:  Log likelihood = -28499.604  
Iteration 4:  Log likelihood = -28499.603  

Computing standard errors ...

Mixed-effects ML regression                            Number of obs =   9,000

        Grouping information
        -------------------------------------------------------------
                        |     No. of       Observations per group
         Group variable |     groups    Minimum    Average    Maximum
        ----------------+--------------------------------------------
                country |         30        300      300.0        300
                     id |      3,000          3        3.0          3
        -------------------------------------------------------------

                                                       Wald chi2(6)  = 1096.15
Log likelihood = -28499.603                            Prob > chi2   =  0.0000

-------------------------------------------------------------------------------------
            outcome | Coefficient  Std. err.      z    P>|z|     [95% conf. interval]
--------------------+----------------------------------------------------------------
                  t |    .943864   .0658716    14.33   0.000      .814758     1.07297
             warmth |   .9134959   .0423732    21.56   0.000      .830446    .9965459
physical_punishment |  -1.007897   .0497622   -20.25   0.000    -1.105429   -.9103647
         1.identity |  -.1276926   .1515835    -0.84   0.400    -.4247908    .1694057
     1.intervention |   .8589966   .1519095     5.65   0.000     .5612596    1.156734
                HDI |  -.0005657   .0196437    -0.03   0.977    -.0390666    .0379352
              _cons |   50.46724   1.338318    37.71   0.000     47.84418    53.09029
-------------------------------------------------------------------------------------

------------------------------------------------------------------------------
  Random-effects parameters  |   Estimate   Std. err.     [95% conf. interval]
-----------------------------+------------------------------------------------
country: Independent         |
                 var(warmth) |   .0107586   .0127845      .0010478    .1104703
                  var(_cons) |   3.167085   .9146761      1.798154    5.578181
-----------------------------+------------------------------------------------
id: Independent              |
                      var(t) |   3.58e-09   7.06e-07      3.5e-177    3.7e+159
                  var(_cons) |   8.387275   .4724188      7.510631    9.366242
-----------------------------+------------------------------------------------
               var(Residual) |   26.02733   .4753701      25.11211    26.97592
------------------------------------------------------------------------------
LR test vs. linear model: chi2(4) = 1247.03               Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

2.3 Nice Table of Results


etable, estimates(crosssectional longitudinal) ///
showstars showstarsnote /// show stars and note
column(estimate) // column is modelname
                                     crosssectional longitudinal
----------------------------------------------------------------
parental warmth in past week             0.835 **      0.913 ** 
                                       (0.064)       (0.042)    
physical punishment in past week        -0.992 **     -1.008 ** 
                                       (0.080)       (0.050)    
hypothetical identity group variable    -0.300                  
                                       (0.217)                  
recieved intervention                                           
  1                                      0.640 **      0.859 ** 
                                       (0.217)       (0.152)    
Human Development Index                 -0.003        -0.001    
                                       (0.020)       (0.020)    
time                                                   0.944 ** 
                                                     (0.066)    
hypothetical identity group variable                            
  1                                                   -0.128    
                                                     (0.152)    
Intercept                               52.000 **     50.467 ** 
                                       (1.371)       (1.338)    
var(warmth)                              0.023         0.011    
                                       (0.026)       (0.013)    
var(_cons)                               2.964         3.167    
                                       (0.974)       (0.915)    
var(e)                                  34.975        26.027    
                                       (0.910)       (0.475)    
var(_cons)                                             8.387    
                                                     (0.472)    
var(t)                                                 0.000    
                                                     (0.000)    
Number of observations                    3000          9000    
----------------------------------------------------------------
** p<.01, * p<.05

2.4 QUESTIONS???